These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31415937)

  • 1. Evaluating stress responses in cowpea under drought stress.
    Carvalho M; Castro I; Moutinho-Pereira J; Correia C; Egea-Cortines M; Matos M; Rosa E; Carnide V; Lino-Neto T
    J Plant Physiol; 2019 Oct; 241():153001. PubMed ID: 31415937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drought increases cowpea (Vigna unguiculata [L.] Walp.) susceptibility to cowpea severe mosaic virus (CPSMV) at early stage of infection.
    Silva RG; Vasconcelos IM; Martins TF; Varela AL; Souza PF; Lobo AK; Silva FD; Silveira JA; Oliveira JT
    Plant Physiol Biochem; 2016 Dec; 109():91-102. PubMed ID: 27669396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The expression of the genes involved in redox metabolism and hydrogen peroxide balance is associated with the resistance of cowpea [Vigna unguiculata (L.) Walp.] to the hemibiotrophic fungus Colletotrichum gloeosporioides.
    Silva FDA; Vasconcelos IM; Saraiva KDC; Costa JH; Fernandes CF; Oliveira JTA
    J Plant Physiol; 2019 Feb; 233():73-83. PubMed ID: 30616072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought.
    Zegaoui Z; Planchais S; Cabassa C; Djebbar R; Belbachir OA; Carol P
    J Plant Physiol; 2017 Nov; 218():26-34. PubMed ID: 28763706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea (Vigna unguiculata [L.] Walp.) under drought.
    Singh SK; Raja Reddy K
    J Photochem Photobiol B; 2011 Oct; 105(1):40-50. PubMed ID: 21820316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening of cowpea (Vigna unguiculata (L.) Walp.) genotypes for waterlogging tolerance using morpho-physiological traits at early growth stage.
    Olorunwa OJ; Adhikari B; Shi A; Barickman TC
    Plant Sci; 2022 Feb; 315():111136. PubMed ID: 35067306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of Drought-Induced Stress in Cowpea Genotypes Using Exogenous Salicylic Acid.
    Melo AS; Costa RRD; Sá FVDS; Dias GF; Alencar RS; Viana PMO; Peixoto TDC; Suassuna JF; Brito MEB; Ferraz RLS; Costa PDS; Melo YL; Corrêa ÉB; Lacerda CF; Dantas Neto J
    Plants (Basel); 2024 Feb; 13(5):. PubMed ID: 38475480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selenate and selenite affect photosynthetic pigments and ROS scavenging through distinct mechanisms in cowpea (Vigna unguiculata (L.) walp) plants.
    Silva VM; Rimoldi Tavanti RF; Gratão PL; Alcock TD; Reis ARD
    Ecotoxicol Environ Saf; 2020 Sep; 201():110777. PubMed ID: 32485493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A resistant cowpea (Vigna unguiculata [L.] Walp.) genotype became susceptible to cowpea severe mosaic virus (CPSMV) after exposure to salt stress.
    Varela ALN; Oliveira JTA; Komatsu S; Silva RGG; Martins TF; Souza PFN; Lobo AKM; Vasconcelos IM; Carvalho FEL; Silveira JAG
    J Proteomics; 2019 Mar; 194():200-217. PubMed ID: 30471437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. H
    Noronha Souza PF; Abreu Oliveira JT; Vasconcelos IM; Magalhães VG; Albuquerque Silva FD; Guedes Silva RG; Oliveira KS; Franco OL; Gomes Silveira JA; Leite Carvalho FE
    J Plant Physiol; 2020 Feb; 245():153110. PubMed ID: 31918353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the changes in lipid peroxidation and antioxidants in drought stress induced cowpea (Vigna unguiculata L.) varieties.
    Nair AS; Abraham TK; Jaya DS
    J Environ Biol; 2008 Sep; 29(5):689-91. PubMed ID: 19295066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial response of Medicago truncatula plants to drought and spider mite attack.
    Antoniou C; Fragkoudi I; Martinou A; Stavrinides MC; Fotopoulos V
    Plant Physiol Biochem; 2018 Sep; 130():658-662. PubMed ID: 30139552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrative small RNA and transcriptome analysis provides insight into key role of miR408 towards drought tolerance response in cowpea.
    Mishra S; Sahu G; Shaw BP
    Plant Cell Rep; 2022 Jan; 41(1):75-94. PubMed ID: 34570259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The WRKY transcription factor family in cowpea: Genomic characterization and transcriptomic profiling under root dehydration.
    Matos MKDS; Benko-Iseppon AM; Bezerra-Neto JP; Ferreira-Neto JRC; Wang Y; Liu H; Pandolfi V; Amorim LLB; Willadino L; do Vale Amorim TC; Kido EA; Vianello RP; Timko MP; Brasileiro-Vidal AC
    Gene; 2022 May; 823():146377. PubMed ID: 35231571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome resources for climate-resilient cowpea, an essential crop for food security.
    Muñoz-Amatriaín M; Mirebrahim H; Xu P; Wanamaker SI; Luo M; Alhakami H; Alpert M; Atokple I; Batieno BJ; Boukar O; Bozdag S; Cisse N; Drabo I; Ehlers JD; Farmer A; Fatokun C; Gu YQ; Guo YN; Huynh BL; Jackson SA; Kusi F; Lawley CT; Lucas MR; Ma Y; Timko MP; Wu J; You F; Barkley NA; Roberts PA; Lonardi S; Close TJ
    Plant J; 2017 Mar; 89(5):1042-1054. PubMed ID: 27775877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential response of quinoa genotypes to drought and foliage-applied H
    Iqbal H; Yaning C; Waqas M; Shareef M; Raza ST
    Ecotoxicol Environ Saf; 2018 Nov; 164():344-354. PubMed ID: 30130733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying critical growth stage and resilient genotypes in cowpea under drought stress contributes to enhancing crop tolerance for improvement and adaptation in Cameroon.
    Ngompe Deffo T; Kouam EB; Mandou MS; Bara RA; Chotangui AH; Souleymanou A; Beyegue Djonko H; Tankou CM
    PLoS One; 2024; 19(6):e0304674. PubMed ID: 38941312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cowpea: a legume crop for a challenging environment.
    Carvalho M; Lino-Neto T; Rosa E; Carnide V
    J Sci Food Agric; 2017 Oct; 97(13):4273-4284. PubMed ID: 28182297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gel-free/label-free proteomic, photosynthetic, and biochemical analysis of cowpea (Vigna unguiculata [L.] Walp.) resistance against Cowpea severe mosaic virus (CPSMV).
    Varela ALN; Komatsu S; Wang X; Silva RGG; Souza PFN; Lobo AKM; Vasconcelos IM; Silveira JAG; Oliveira JTA
    J Proteomics; 2017 Jun; 163():76-91. PubMed ID: 28502737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orphan genes are involved in drought adaptations and ecoclimatic-oriented selections in domesticated cowpea.
    Li G; Wu X; Hu Y; Muñoz-Amatriaín M; Luo J; Zhou W; Wang B; Wang Y; Wu X; Huang L; Lu Z; Xu P
    J Exp Bot; 2019 Jun; 70(12):3101-3110. PubMed ID: 30949664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.