These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31416025)

  • 1. Structure and rheology of liquid crystal hydroglass formed in aqueous nanocrystalline cellulose suspensions.
    Xu Y; Atrens A; Stokes JR
    J Colloid Interface Sci; 2019 Nov; 555():702-713. PubMed ID: 31416025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of nanocrystalline cellulose suspensions: Rheology, liquid crystal ordering and colloidal phase behaviour.
    Xu Y; Atrens A; Stokes JR
    Adv Colloid Interface Sci; 2020 Jan; 275():102076. PubMed ID: 31780045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase transition and gelation in cellulose nanocrystal-based aqueous suspensions studied by SANS.
    Xu Y; Gilbert EP; Sokolova A; Stokes JR
    J Colloid Interface Sci; 2024 Mar; 658():660-670. PubMed ID: 38134674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheology and microstructure of aqueous suspensions of nanocrystalline cellulose rods.
    Xu Y; Atrens AD; Stokes JR
    J Colloid Interface Sci; 2017 Jun; 496():130-140. PubMed ID: 28214623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid crystal hydroglass formed via phase separation of nanocellulose colloidal rods.
    Xu Y; Atrens AD; Stokes JR
    Soft Matter; 2019 Feb; 15(8):1716-1720. PubMed ID: 30638248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion-Induced Hydrogel Formation and Nematic Ordering of Nanocrystalline Cellulose Suspensions.
    Bertsch P; Isabettini S; Fischer P
    Biomacromolecules; 2017 Dec; 18(12):4060-4066. PubMed ID: 29028331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Liquid, gel and soft glass" phase transitions and rheology of nanocrystalline cellulose suspensions as a function of concentration and salinity.
    Xu Y; Atrens AD; Stokes JR
    Soft Matter; 2018 Mar; 14(10):1953-1963. PubMed ID: 29479584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion-Induced Formation of Nanocrystalline Cellulose Colloidal Glasses Containing Nematic Domains.
    Bertsch P; Sánchez-Ferrer A; Bagnani M; Isabettini S; Kohlbrecher J; Mezzenga R; Fischer P
    Langmuir; 2019 Mar; 35(11):4117-4124. PubMed ID: 30810320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rheological properties of nanocrystalline cellulose suspensions.
    Chen Y; Xu C; Huang J; Wu D; Lv Q
    Carbohydr Polym; 2017 Feb; 157():303-310. PubMed ID: 27987931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rheology of nanocrystalline cellulose aqueous suspensions.
    Shafiei-Sabet S; Hamad WY; Hatzikiriakos SG
    Langmuir; 2012 Dec; 28(49):17124-33. PubMed ID: 23146090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods.
    Boluk Y; Zhao L; Incani V
    Langmuir; 2012 Apr; 28(14):6114-23. PubMed ID: 22448630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial rheology of stable and weakly aggregated two-dimensional suspensions.
    Reynaert S; Moldenaers P; Vermant J
    Phys Chem Chem Phys; 2007 Dec; 9(48):6463-75. PubMed ID: 18060178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating the chiral nanoarchitecture of cellulose nanocrystals through interaction with salts and polymer.
    Lin M; Singh Raghuwanshi V; Browne C; Simon GP; Garnier G
    J Colloid Interface Sci; 2022 May; 613():207-217. PubMed ID: 35033766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the scaling law on gelation of oppositely charged nanocrystalline cellulose and polyelectrolyte.
    Lu A; Wang Y; Boluk Y
    Carbohydr Polym; 2014 May; 105():214-21. PubMed ID: 24708972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-property relationship of a soft colloidal glass in simple and mixed flows.
    Calabrese V; Varchanis S; Haward SJ; Tsamopoulos J; Shen AQ
    J Colloid Interface Sci; 2021 Nov; 601():454-466. PubMed ID: 34126412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induced phase separation in low-ionic-strength cellulose nanocrystal suspensions containing high-molecular-weight blue dextrans.
    Beck-Candanedo S; Viet D; Gray DG
    Langmuir; 2006 Oct; 22(21):8690-5. PubMed ID: 17014106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dispersibility in water of dried nanocrystalline cellulose.
    Beck S; Bouchard J; Berry R
    Biomacromolecules; 2012 May; 13(5):1486-94. PubMed ID: 22482888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polylactide/acetylated nanocrystalline cellulose composites prepared by a continuous route: A phase interface-property relation study.
    Xu C; Chen J; Wu D; Chen Y; Lv Q; Wang M
    Carbohydr Polym; 2016 Aug; 146():58-66. PubMed ID: 27112851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalized indirect Fourier transformation as a valuable tool for the structural characterization of aqueous nanocrystalline cellulose suspensions by small angle X-ray scattering.
    Ehmann HM; Spirk S; Doliška A; Mohan T; Gössler W; Ribitsch V; Sfiligoj-Smole M; Stana-Kleinschek K
    Langmuir; 2013 Mar; 29(11):3740-8. PubMed ID: 23428094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The liquidlike ordering of lipid A-diphosphate colloidal crystals: the influence of Ca2+, Mg2+, Na+, and K+ on the ordering of colloidal suspensions of lipid A-diphosphate in aqueous solutions.
    Faunce CA; Reichelt H; Paradies HH; Quitschau P; Zimmermann K
    J Chem Phys; 2005 Jun; 122(21):214727. PubMed ID: 15974782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.