These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 3141625)

  • 1. Ca2+-activated K+ conductance causes membrane hyperpolarizations in a monkey kidney cell line (JTC-12).
    Chang H; Yamashita N; Matsunaga H; Kurokawa K
    J Membr Biol; 1988 Aug; 103(3):263-71. PubMed ID: 3141625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperpolarizing membrane potential changes in a cloned monkey kidney cell line.
    Chang H; Yamashita N; Ogata E; Kurokawa K
    Pflugers Arch; 1985 Oct; 405(3):223-5. PubMed ID: 3934641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of nitric oxide (NO) and NO donors on the membrane conductance of circular smooth muscle cells of the guinea-pig proximal colon.
    Watson MJ; Bywater RA; Taylor GS; Lang RJ
    Br J Pharmacol; 1996 Aug; 118(7):1605-14. PubMed ID: 8842421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Release of calcium ions linked to the activation of potassium conductance in a caffeine-treated sympathetic neurone.
    Kuba K
    J Physiol; 1980 Jan; 298():251-69. PubMed ID: 6767024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium channel and calcium pump involved in oscillatory hyperpolarizing responses of L-strain mouse fibroblasts.
    Okada Y; Tsuchiya W; Yada T
    J Physiol; 1982 Jun; 327():449-61. PubMed ID: 6288929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiology of phagocytic membranes. III. Evidence for a calcium-dependent potassium permeability change during slow hyperpolarizations of activated macrophages.
    Oliveira-Castro GM; Dos Reis GA
    Biochim Biophys Acta; 1981 Jan; 640(2):500-11. PubMed ID: 6783141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of two voltage-sensitive potassium currents, and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurones.
    Barrett EF; Barret JN
    J Physiol; 1976 Mar; 255(3):737-74. PubMed ID: 1083431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of sodium-potassium pump inhibition and low sodium on membrane potential in cultured embryonic chick heart cells.
    Jacob R; Lieberman M; Murphy E; Piwnica-Worms D
    J Physiol; 1987 Jun; 387():549-66. PubMed ID: 2443685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ubiquinones on spontaneous membrane hyperpolarizations in a cloned monkey kidney cell line.
    Yamashita N; Chang H; Kurokawa K; Ogata E
    Life Sci; 1987 Mar; 40(12):1215-8. PubMed ID: 3104709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiology of phagocytic membranes. Role of divalent cations in membrane hyperpolarizations of macrophage polykaryons.
    Araujo EG; Persechini PM; Oliveira-Castro GM
    Biochim Biophys Acta; 1986 Apr; 856(2):362-72. PubMed ID: 3955048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oscillations of membrane potential in L cells. IV. Role of intracellular Ca2+ in hyperpolarizing excitability.
    Okada Y; Tsuchiya W; Inouye A
    J Membr Biol; 1979 Jun; 47(4):357-76. PubMed ID: 381668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of membrane currents in isolated smooth muscle cells from guinea-pig trachea.
    Hisada T; Kurachi Y; Sugimoto T
    Pflugers Arch; 1990 Apr; 416(1-2):151-61. PubMed ID: 2162028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of Ca2+-activated K+ channels and non-selective cation channels to membrane potential of pulmonary arterial smooth muscle cells of the rabbit.
    Bae YM; Park MK; Lee SH; Ho WK; Earm YE
    J Physiol; 1999 Feb; 514 ( Pt 3)(Pt 3):747-58. PubMed ID: 9882747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic basis for the electroresponsiveness of guinea-pig ventromedial hypothalamic neurones in vitro.
    Minami T; Oomura Y; Sugimori M
    J Physiol; 1986 Nov; 380():145-56. PubMed ID: 3612562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhythmic hyperpolarizations and depolarization of sympathetic ganglion cells induced by caffeine.
    Kuba K; Nishi S
    J Neurophysiol; 1976 May; 39(3):547-63. PubMed ID: 181543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for two K+ currents activated upon hyperpolarization of Paramecium tetraurelia.
    Preston RR; Saimi Y; Kung C
    J Membr Biol; 1990 Apr; 115(1):41-50. PubMed ID: 2110594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the involvement of calmodulin in the operation of Ca-activated K channels in mouse fibroblasts.
    Okada Y; Yada T; Ohno-Shosaku T; Oiki S
    J Membr Biol; 1987; 96(2):121-8. PubMed ID: 2439690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronous oscillation of the cytoplasmic Ca2+ concentration and membrane potential in cultured epithelial cells (Intestine 407).
    Yada T; Oiki S; Ueda S; Okada Y
    Biochim Biophys Acta; 1986 Jun; 887(1):105-12. PubMed ID: 3085731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium conductance in straight proximal tubule cells of the mouse. Effect of barium, verapamil and quinidine.
    Völkl H; Greger R; Lang F
    Biochim Biophys Acta; 1987 Jun; 900(2):275-81. PubMed ID: 3593717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oscillations of cytoplasmic concentrations of Ca2+ and K+ in fused L cells.
    Ueda S; Oiki S; Okada Y
    J Membr Biol; 1986; 91(1):65-72. PubMed ID: 3735405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.