BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 31416250)

  • 41. Utilization of Near Infrared Fluorescence Imaging to Track and Quantify the Pulmonary Retention of Single-Walled Carbon Nanotubes in Mice.
    Nicholas J; Chen H; Liu K; Venu I; Bolser D; Saleh NB; Bisesi JH; Castleman W; Lee Ferguson P; Sabo-Attwood T
    NanoImpact; 2019 Feb; 14():. PubMed ID: 32818159
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photothermal ablation of tumor cells using a single-walled carbon nanotube-peptide composite.
    Hashida Y; Tanaka H; Zhou S; Kawakami S; Yamashita F; Murakami T; Umeyama T; Imahori H; Hashida M
    J Control Release; 2014 Jan; 173():59-66. PubMed ID: 24211651
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single-walled carbon nanotube growth from chiral carbon nanorings: prediction of chirality and diameter influence on growth rates.
    Li HB; Page AJ; Irle S; Morokuma K
    J Am Chem Soc; 2012 Sep; 134(38):15887-96. PubMed ID: 22928987
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enhancing near-infrared photoluminescence from single-walled carbon nanotubes by defect-engineering using benzoyl peroxide.
    Przypis L; Krzywiecki M; Niidome Y; Aoki H; Shiraki T; Janas D
    Sci Rep; 2020 Nov; 10(1):19877. PubMed ID: 33199740
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polymer removal and dispersion exchange of (10,5) chiral carbon nanotubes with enhanced 1.5 μm photoluminescence.
    Li Y; Liu Y; Jin F; Cao L; Jin H; Qiu S; Li Q
    Nanoscale Adv; 2024 Jan; 6(3):792-797. PubMed ID: 38298584
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antimicrobial photodynamic therapy: Single-walled carbon nanotube (SWCNT)-Porphyrin conjugate for visible light mediated inactivation of Staphylococcus aureus.
    Sah U; Sharma K; Chaudhri N; Sankar M; Gopinath P
    Colloids Surf B Biointerfaces; 2018 Feb; 162():108-117. PubMed ID: 29190461
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization and Biodistribution Analysis of Oxygen-Doped Single-Walled Carbon Nanotubes Used as in Vivo Fluorescence Imaging Probes.
    Takeuchi T; Iizumi Y; Yudasaka M; Kizaka-Kondoh S; Okazaki T
    Bioconjug Chem; 2019 May; 30(5):1323-1330. PubMed ID: 30848886
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stochastic Formation of Quantum Defects in Carbon Nanotubes.
    Ma C; Schrage CA; Gretz J; Akhtar A; Sistemich L; Schnitzler L; Li H; Tschulik K; Flavel BS; Kruss S
    ACS Nano; 2023 Aug; 17(16):15989-15998. PubMed ID: 37527201
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis, purification, properties and characterization of sorted single-walled carbon nanotubes.
    Bati ASR; Yu L; Batmunkh M; Shapter JG
    Nanoscale; 2018 Dec; 10(47):22087-22139. PubMed ID: 30475354
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Length-dependent intracellular bundling of single-walled carbon nanotubes influences retention.
    Jin S; Wijesekara P; Boyer PD; Dahl KN; Islam MF
    J Mater Chem B; 2017 Aug; 5(32):6657-6665. PubMed ID: 32264428
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differential near-infrared imaging of heterocysts using single-walled carbon nanotubes.
    Antonucci A; Reggente M; Gillen AJ; Roullier C; Lambert BP; Boghossian AA
    Photochem Photobiol Sci; 2023 Jan; 22(1):103-113. PubMed ID: 36190690
    [TBL] [Abstract][Full Text] [Related]  

  • 52. "Smart poisoning" of Co/SiO
    Yuan Y; Karahan HE; Yıldırım C; Wei L; Birer Ö; Zhai S; Lau R; Chen Y
    Nanoscale; 2016 Oct; 8(40):17705-17713. PubMed ID: 27722714
    [TBL] [Abstract][Full Text] [Related]  

  • 53. En route to single-step, two-phase purification of carbon nanotubes facilitated by high-throughput spectroscopy.
    Podlesny B; Olszewska B; Yaari Z; Jena PV; Ghahramani G; Feiner R; Heller DA; Janas D
    Sci Rep; 2021 May; 11(1):10618. PubMed ID: 34011997
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High Sensitivity Near-Infrared Imaging of Fluorescent Nanosensors.
    Ackermann J; Stegemann J; Smola T; Reger E; Jung S; Schmitz A; Herbertz S; Erpenbeck L; Seidl K; Kruss S
    Small; 2023 Apr; 19(14):e2206856. PubMed ID: 36610045
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Infrared Light-Emitting Diodes Based on Chirality-Sorted Carbon Nanotube Films.
    Han B; Li Y; Wu W; Cai X; Qiu S; He X; Wang S
    ACS Appl Mater Interfaces; 2024 Jan; 16(4):4975-4983. PubMed ID: 38233025
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reciprocal effects of the chirality and the surface functionalization on the drug delivery permissibility of carbon nanotubes.
    Skandani AA; Al-Haik M
    Soft Matter; 2013 Dec; 9(48):11645-9. PubMed ID: 25535628
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hybrid, dual visible and near-infrared fluorescence emission of (6,5) single-walled carbon nanotubes modified with fluorescein through aryl diazonium salt chemistry.
    Tomczyk MM; Minoshima M; Kikuchi K; Blacha-Grzechnik A; Starosolski Z; Bhavane R; Zalewski M; Kuźnik N
    Nanotechnology; 2022 Nov; 34(5):. PubMed ID: 36278289
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In vivo drug delivery of gemcitabine with PEGylated single-walled carbon nanotubes.
    Razzazan A; Atyabi F; Kazemi B; Dinarvand R
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():614-25. PubMed ID: 26952465
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular-basis of single-walled carbon nanotube recognition by single-stranded DNA.
    Roxbury D; Mittal J; Jagota A
    Nano Lett; 2012 Mar; 12(3):1464-9. PubMed ID: 22375694
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enrichment of high-purity large-diameter semiconducting single-walled carbon nanotubes.
    Wang J; Lei T
    Nanoscale; 2022 Jan; 14(4):1096-1106. PubMed ID: 34989744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.