BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31416267)

  • 1. Gold Nanostar Colorimetric Detection of Fructosyl Valine as a Potential Future Point of Care Biosensor Candidate for Glycated Haemoglobin Detection.
    Mulder DW; Phiri MM; Vorster BC
    Biosensors (Basel); 2019 Aug; 9(3):. PubMed ID: 31416267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An amperometric biosensor for specific detection of glycated hemoglobin based on recombinant engineered fructosyl peptide oxidase.
    Shahbazmohammadi H; Sardari S; Omidinia E
    Int J Biol Macromol; 2020 Jan; 142():855-865. PubMed ID: 31622711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycated hemoglobin detection with electrochemical sensing amplified by gold nanoparticles embedded N-doped graphene nanosheet.
    Jain U; Chauhan N
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):578-584. PubMed ID: 26897102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An amperometric hemoglobin A1c biosensor based on immobilization of fructosyl amino acid oxidase onto zinc oxide nanoparticles-polypyrrole film.
    Chawla S; Pundir CS
    Anal Biochem; 2012 Nov; 430(2):156-62. PubMed ID: 22906687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Titania nanotubes decorated with gold nanoparticles for electrochemiluminescent biosensing of glycosylated hemoglobin.
    Zhao Q; Tang S; Fang C; Tu YF
    Anal Chim Acta; 2016 Sep; 936():83-90. PubMed ID: 27566342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An electrochemical biosensor for fructosyl valine for glycosylated hemoglobin detection based on core-shell magnetic bionanoparticles modified gold electrode.
    Chawla S; Pundir CS
    Biosens Bioelectron; 2011 Apr; 26(8):3438-43. PubMed ID: 21324667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zeta potential based colorimetric immunoassay for the direct detection of diabetic marker HbA1c using gold nanoprobes.
    Wangoo N; Kaushal J; Bhasin KK; Mehta SK; Suri CR
    Chem Commun (Camb); 2010 Aug; 46(31):5755-7. PubMed ID: 20571696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a flow-injection analysis (FIA) enzyme sensor for fructosyl amine monitoring.
    Ogawa K; Stöllner D; Scheller F; Warsinke A; Ishimura F; Tsugawa W; Ferri S; Sode K
    Anal Bioanal Chem; 2002 Jul; 373(4-5):211-4. PubMed ID: 12110969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nano-flowers (Au NFs) modified screen-printed carbon electrode electrochemical biosensor for label-free and quantitative detection of glycated hemoglobin.
    Wang X; Su J; Zeng D; Liu G; Liu L; Xu Y; Wang C; Liu X; Wang L; Mi X
    Talanta; 2019 Aug; 201():119-125. PubMed ID: 31122401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Point-of-care detection of glycated hemoglobin using a novel dry chemistry-based electrochemiluminescence device.
    Zhou X; Lai W; Zhong J; Yang Y; Chen Z; Zhang C
    Anal Chim Acta; 2023 Oct; 1279():341829. PubMed ID: 37827624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Affinity sensor for haemoglobin A1c based on single-walled carbon nanotube field-effect transistor and fructosyl amino acid binding protein.
    Hatada M; Tran TT; Tsugawa W; Sode K; Mulchandani A
    Biosens Bioelectron; 2019 Mar; 129():254-259. PubMed ID: 30297174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of fructosyl amino acid oxidase engineering research: a glimpse into the future of hemoglobin A1c biosensing.
    Ferri S; Kim S; Tsugawa W; Sode K
    J Diabetes Sci Technol; 2009 May; 3(3):585-92. PubMed ID: 20144298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of glycated hemoglobin with special emphasis on biosensing methods.
    Pundir CS; Chawla S
    Anal Biochem; 2014 Jan; 444():47-56. PubMed ID: 24090871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of an amperometric glycated hemoglobin biosensor based on Au-Pt bimetallic nanoparticles and poly (indole-5-carboxylic acid) modified Au electrode.
    Jain U; Gupta S; Chauhan N
    Int J Biol Macromol; 2017 Dec; 105(Pt 1):549-555. PubMed ID: 28716755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Detection of Glucose in Serum Based on Biocatalytic Shape-Altering of Gold Nanostars.
    Phiri MM; Mulder DW; Vorster BC
    Biosensors (Basel); 2019 Jun; 9(3):. PubMed ID: 31261949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review of Electrochemical Sensors for the Detection of Glycated Hemoglobin.
    Zhan Z; Li Y; Zhao Y; Zhang H; Wang Z; Fu B; Li WJ
    Biosensors (Basel); 2022 Apr; 12(4):. PubMed ID: 35448281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of glycated hemoglobin with voltammetric sensing amplified by 3D-structured nanocomposites.
    Jain U; Gupta S; Chauhan N
    Int J Biol Macromol; 2017 Aug; 101():896-903. PubMed ID: 28365286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical techniques for the detection of glycated haemoglobin underlining the sensors.
    Sharma P; Panchal A; Yadav N; Narang J
    Int J Biol Macromol; 2020 Jul; 155():685-696. PubMed ID: 32229211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An electrochemical paper based nano-genosensor modified with reduced graphene oxide-gold nanostructure for determination of glycated hemoglobin in blood.
    Shajaripour Jaberi SY; Ghaffarinejad A; Omidinia E
    Anal Chim Acta; 2019 Oct; 1078():42-52. PubMed ID: 31358227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A signal-amplified electrochemical DNA biosensor incorporated with a colorimetric internal control for Vibrio cholerae detection using shelf-ready reagents.
    Low KF; Zain ZM; Yean CY
    Biosens Bioelectron; 2017 Jan; 87():256-263. PubMed ID: 27567251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.