These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
327 related articles for article (PubMed ID: 31416299)
1. Bread-Derived Bioactive Porous Scaffolds: An Innovative and Sustainable Approach to Bone Tissue Engineering. Fiume E; Serino G; Bignardi C; Verné E; Baino F Molecules; 2019 Aug; 24(16):. PubMed ID: 31416299 [TBL] [Abstract][Full Text] [Related]
2. Dolomite-Foamed Bioactive Silicate Scaffolds for Bone Tissue Repair. Fiume E; Tulyaganov D; Ubertalli G; Verné E; Baino F Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32023840 [TBL] [Abstract][Full Text] [Related]
3. In vitro Evaluation of Porous borosilicate, borophosphate and phosphate Bioactive Glasses Scaffolds fabricated using Foaming Agent for Bone Regeneration. Erasmus EP; Sule R; Johnson OT; Massera J; Sigalas I Sci Rep; 2018 Feb; 8(1):3699. PubMed ID: 29487328 [TBL] [Abstract][Full Text] [Related]
4. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties, and in vitro effects on human marrow stromal cells. Vitale-Brovarone C; Ciapetti G; Leonardi E; Baldini N; Bretcanu O; Verné E; Baino F J Biomater Appl; 2011 Nov; 26(4):465-89. PubMed ID: 20566654 [TBL] [Abstract][Full Text] [Related]
5. Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration. Nommeots-Nomm A; Labbaf S; Devlin A; Todd N; Geng H; Solanki AK; Tang HM; Perdika P; Pinna A; Ejeian F; Tsigkou O; Lee PD; Esfahani MHN; Mitchell CA; Jones JR Acta Biomater; 2017 Jul; 57():449-461. PubMed ID: 28457960 [TBL] [Abstract][Full Text] [Related]
6. Enhanced bone tissue regeneration with hydrogel-based scaffolds by embedding parathyroid hormone in mesoporous bioactive glass. Sordi MB; Fredel MC; da Cruz ACC; Sharpe PT; de Souza Magini R Clin Oral Investig; 2023 Jan; 27(1):125-137. PubMed ID: 36018448 [TBL] [Abstract][Full Text] [Related]
7. Nanocomposite scaffolds with tunable mechanical and degradation capabilities: co-delivery of bioactive agents for bone tissue engineering. Cattalini JP; Roether J; Hoppe A; Pishbin F; Haro Durand L; Gorustovich A; Boccaccini AR; Lucangioli S; Mouriño V Biomed Mater; 2016 Oct; 11(6):065003. PubMed ID: 27767020 [TBL] [Abstract][Full Text] [Related]
8. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution. Baino F; Ferraris M; Bretcanu O; Verné E; Vitale-Brovarone C J Biomater Appl; 2013 Mar; 27(7):872-90. PubMed ID: 22207602 [TBL] [Abstract][Full Text] [Related]
9. Processing and characterization of innovative scaffolds for bone tissue engineering. Bellucci D; Chiellini F; Ciardelli G; Gazzarri M; Gentile P; Sola A; Cannillo V J Mater Sci Mater Med; 2012 Jun; 23(6):1397-409. PubMed ID: 22441671 [TBL] [Abstract][Full Text] [Related]
10. Alginate-bioactive glass containing Zn and Mg composite scaffolds for bone tissue engineering. Zamani D; Moztarzadeh F; Bizari D Int J Biol Macromol; 2019 Sep; 137():1256-1267. PubMed ID: 31279876 [TBL] [Abstract][Full Text] [Related]
11. Optimising bioactive glass scaffolds for bone tissue engineering. Jones JR; Ehrenfried LM; Hench LL Biomaterials; 2006 Mar; 27(7):964-73. PubMed ID: 16102812 [TBL] [Abstract][Full Text] [Related]
12. Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models. El-Rashidy AA; Roether JA; Harhaus L; Kneser U; Boccaccini AR Acta Biomater; 2017 Oct; 62():1-28. PubMed ID: 28844964 [TBL] [Abstract][Full Text] [Related]
13. Oxygen diffusion in marine-derived tissue engineering scaffolds. Boccardi E; Belova IV; Murch GE; Boccaccini AR; Fiedler T J Mater Sci Mater Med; 2015 Jun; 26(6):200. PubMed ID: 26111951 [TBL] [Abstract][Full Text] [Related]
14. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration. Fu Q; Saiz E; Tomsia AP Acta Biomater; 2011 Oct; 7(10):3547-54. PubMed ID: 21745606 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and characterization of highly porous barium titanate based scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications. Ehterami A; Kazemi M; Nazari B; Saraeian P; Azami M J Mech Behav Biomed Mater; 2018 Mar; 79():195-202. PubMed ID: 29306083 [TBL] [Abstract][Full Text] [Related]
16. Engineering Citric Acid-Based Porous Scaffolds for Bone Regeneration. Masehi-Lano JJ; Chung EJ Methods Mol Biol; 2018; 1758():1-10. PubMed ID: 29679318 [TBL] [Abstract][Full Text] [Related]
17. Osteoinductive fibrous scaffolds of biopolymer/mesoporous bioactive glass nanocarriers with excellent bioactivity and long-term delivery of osteogenic drug. El-Fiqi A; Kim JH; Kim HW ACS Appl Mater Interfaces; 2015 Jan; 7(2):1140-52. PubMed ID: 25531645 [TBL] [Abstract][Full Text] [Related]
18. Feasibility, tailoring and properties of polyurethane/bioactive glass composite scaffolds for tissue engineering. Baino F; Verné E; Vitale-Brovarone C J Mater Sci Mater Med; 2009 Nov; 20(11):2189-95. PubMed ID: 19488679 [TBL] [Abstract][Full Text] [Related]
19. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite. Degli Esposti M; Chiellini F; Bondioli F; Morselli D; Fabbri P Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():286-296. PubMed ID: 30948063 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. Baino F; Vitale-Brovarone C J Biomed Mater Res A; 2011 Jun; 97(4):514-35. PubMed ID: 21465645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]