These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 31416313)

  • 1. Charge Separation, Band-Bending, and Recombination in WO
    Corby S; Pastor E; Dong Y; Zheng X; Francàs L; Sachs M; Selim S; Kafizas A; Bakulin AA; Durrant JR
    J Phys Chem Lett; 2019 Sep; 10(18):5395-5401. PubMed ID: 31416313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanostructured core-shell metal borides-oxides as highly efficient electrocatalysts for photoelectrochemical water oxidation.
    Lu C; Jothi PR; Thersleff T; Budnyak TM; Rokicinska A; Yubuta K; Dronskowski R; Kuśtrowski P; Fokwa BPT; Slabon A
    Nanoscale; 2020 Feb; 12(5):3121-3128. PubMed ID: 31965133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting.
    Zheng G; Wang J; Liu H; Murugadoss V; Zu G; Che H; Lai C; Li H; Ding T; Gao Q; Guo Z
    Nanoscale; 2019 Oct; 11(41):18968-18994. PubMed ID: 31361294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of Charge Carriers Trapping and Relaxation in Hematite by Oxygen Vacancy Charge: Ab Initio Non-adiabatic Molecular Dynamics.
    Zhou Z; Liu J; Long R; Li L; Guo L; Prezhdo OV
    J Am Chem Soc; 2017 May; 139(19):6707-6717. PubMed ID: 28445637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate-Electrode Interface Engineering by an Electron-Transport Layer in Hematite Photoanode.
    Ding C; Wang Z; Shi J; Yao T; Li A; Yan P; Huang B; Li C
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7086-91. PubMed ID: 26926845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining the role of oxygen vacancies in the photoelectrocatalytic performance of WO
    Corby S; Francàs L; Kafizas A; Durrant JR
    Chem Sci; 2020 Feb; 11(11):2907-2914. PubMed ID: 34122791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional WO
    Wang Y; Tian W; Chen L; Cao F; Guo J; Li L
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40235-40243. PubMed ID: 29067799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Back electron-hole recombination in hematite photoanodes for water splitting.
    Le Formal F; Pendlebury SR; Cornuz M; Tilley SD; Grätzel M; Durrant JR
    J Am Chem Soc; 2014 Feb; 136(6):2564-74. PubMed ID: 24437340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Oxygen and Tungsten Vacancies on a WO3 Photoanode for Enhanced Water Oxidation.
    Ma M; Zhang K; Li P; Jung MS; Jeong MJ; Park JH
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11819-23. PubMed ID: 27533279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water Oxidation and Electron Extraction Kinetics in Nanostructured Tungsten Trioxide Photoanodes.
    Corby S; Francàs L; Selim S; Sachs M; Blackman C; Kafizas A; Durrant JR
    J Am Chem Soc; 2018 Nov; 140(47):16168-16177. PubMed ID: 30383367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. WO
    Grigioni I; Di Liberto G; Dozzi MV; Tosoni S; Pacchioni G; Selli E
    ACS Appl Energy Mater; 2021 Aug; 4(8):8421-8431. PubMed ID: 34485843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subpicosecond to Second Time-Scale Charge Carrier Kinetics in Hematite-Titania Nanocomposite Photoanodes.
    Ruoko TP; Kaunisto K; Bärtsch M; Pohjola J; Hiltunen A; Niederberger M; Tkachenko NV; Lemmetyinen H
    J Phys Chem Lett; 2015 Aug; 6(15):2859-64. PubMed ID: 26267170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte.
    Spurgeon JM; Velazquez JM; McDowell MT
    Phys Chem Chem Phys; 2014 Feb; 16(8):3623-31. PubMed ID: 24435160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Oxygen Vacancy Occupancy on Charge Carrier Dynamics in BiVO
    Selim S; Pastor E; García-Tecedor M; Morris MR; Francàs L; Sachs M; Moss B; Corby S; Mesa CA; Gimenez S; Kafizas A; Bakulin AA; Durrant JR
    J Am Chem Soc; 2019 Nov; 141(47):18791-18798. PubMed ID: 31663329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved charge separation efficiency of hematite photoanodes by coating an ultrathin p-type LaFeO
    Fang T; Guo Y; Cai S; Zhang N; Hu Y; Zhang S; Li Z; Zou Z
    Nanotechnology; 2017 Sep; 28(39):394003. PubMed ID: 28879862
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced photoelectrochemical activities for water oxidation and phenol degradation on WO
    Sun L; Wang Y; Raziq F; Qu Y; Bai L; Jing L
    Sci Rep; 2017 May; 7(1):1303. PubMed ID: 28465558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoelectrocatalytic degradation of emerging contaminants at WO
    Cristino V; Pasti L; Marchetti N; Berardi S; Bignozzi CA; Molinari A; Passabi F; Caramori S; Amidani L; Orlandi M; Bazzanella N; Piccioni A; Kopula Kesavan J; Boscherini F; Pasquini L
    Photochem Photobiol Sci; 2019 Sep; 18(9):2150-2163. PubMed ID: 30931455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly of g-C
    Wang CH; Qin DD; Shan DL; Gu J; Yan Y; Chen J; Wang QH; He CH; Li Y; Quan JJ; Lu XQ
    Phys Chem Chem Phys; 2017 Feb; 19(6):4507-4515. PubMed ID: 28120968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured WO3 /BiVO4 photoanodes for efficient photoelectrochemical water splitting.
    Pihosh Y; Turkevych I; Mawatari K; Asai T; Hisatomi T; Uemura J; Tosa M; Shimamura K; Kubota J; Domen K; Kitamori T
    Small; 2014 Sep; 10(18):3692-9. PubMed ID: 24863862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.