BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 31416369)

  • 1. Dealing with frequent hitters in drug discovery: a multidisciplinary view on the issue of filtering compounds on biological screenings.
    Dantas RF; Evangelista TCS; Neves BJ; Senger MR; Andrade CH; Ferreira SB; Silva-Junior FP
    Expert Opin Drug Discov; 2019 Dec; 14(12):1269-1282. PubMed ID: 31416369
    [No Abstract]   [Full Text] [Related]  

  • 2. Charting, navigating, and populating natural product chemical space for drug discovery.
    Lachance H; Wetzel S; Kumar K; Waldmann H
    J Med Chem; 2012 Jul; 55(13):5989-6001. PubMed ID: 22537178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Privileged structures: efficient chemical "navigators" toward unexplored biologically relevant chemical spaces.
    Kim J; Kim H; Park SB
    J Am Chem Soc; 2014 Oct; 136(42):14629-38. PubMed ID: 25310802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Small-Molecule Reactivity Identifies Promiscuous Bioactive Compounds.
    Matlock MK; Hughes TB; Dahlin JL; Swamidass SJ
    J Chem Inf Model; 2018 Aug; 58(8):1483-1500. PubMed ID: 29990427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters.
    Stork C; Chen Y; Šícho M; Kirchmair J
    J Chem Inf Model; 2019 Mar; 59(3):1030-1043. PubMed ID: 30624935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smart Design of Small-Molecule Libraries: When Organic Synthesis Meets Cheminformatics.
    Lenci E; Trabocchi A
    Chembiochem; 2019 May; 20(9):1115-1123. PubMed ID: 30589187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filtering promiscuous compounds in early drug discovery: is it a good idea?
    Senger MR; Fraga CA; Dantas RF; Silva FP
    Drug Discov Today; 2016 Jun; 21(6):868-72. PubMed ID: 26880580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PAIN(S) relievers for medicinal chemists: how computational methods can assist in hit evaluation.
    Stork C; Kirchmair J
    Future Med Chem; 2018 Jul; 10(13):1533-1535. PubMed ID: 29956552
    [No Abstract]   [Full Text] [Related]  

  • 9. Nuisance Compounds, PAINS Filters, and Dark Chemical Matter in the GSK HTS Collection.
    Chakravorty SJ; Chan J; Greenwood MN; Popa-Burke I; Remlinger KS; Pickett SD; Green DVS; Fillmore MC; Dean TW; Luengo JI; Macarrón R
    SLAS Discov; 2018 Jul; 23(6):532-545. PubMed ID: 29699447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial Intelligence and Cheminformatics-Guided Modern Privileged Scaffold Research.
    Qiu HY; Clausen RP; He Y; Zhu HL
    Curr Top Med Chem; 2021; 21(28):2593-2608. PubMed ID: 33982652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locating sweet spots for screening hits and evaluating pan-assay interference filters from the performance analysis of two lead-like libraries.
    Mok NY; Maxe S; Brenk R
    J Chem Inf Model; 2013 Mar; 53(3):534-44. PubMed ID: 23451880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hit Dexter: A Machine-Learning Model for the Prediction of Frequent Hitters.
    Stork C; Wagner J; Friedrich NO; de Bruyn Kops C; Šícho M; Kirchmair J
    ChemMedChem; 2018 Mar; 13(6):564-571. PubMed ID: 29285887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequent hitters: nuisance artifacts in high-throughput screening.
    Yang ZY; He JH; Lu AP; Hou TJ; Cao DS
    Drug Discov Today; 2020 Apr; 25(4):657-667. PubMed ID: 31987936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cheminformatics approaches to analyze diversity in compound screening libraries.
    Akella LB; DeCaprio D
    Curr Opin Chem Biol; 2010 Jun; 14(3):325-30. PubMed ID: 20457001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmarking the mechanisms of frequent hitters: limitation of PAINS alerts.
    Yang ZY; Yang ZJ; He JH; Lu AP; Liu S; Hou TJ; Cao DS
    Drug Discov Today; 2021 Jun; 26(6):1353-1358. PubMed ID: 33581116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Evolution of Chemical High-Throughput Experimentation To Address Challenging Problems in Pharmaceutical Synthesis.
    Krska SW; DiRocco DA; Dreher SD; Shevlin M
    Acc Chem Res; 2017 Dec; 50(12):2976-2985. PubMed ID: 29172435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The emergence of the C-H functionalization strategy in medicinal chemistry and drug discovery.
    Jana R; Begam HM; Dinda E
    Chem Commun (Camb); 2021 Oct; 57(83):10842-10866. PubMed ID: 34596175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fragment-based screening with natural products for novel anti-parasitic disease drug discovery.
    Liu M; Quinn RJ
    Expert Opin Drug Discov; 2019 Dec; 14(12):1283-1295. PubMed ID: 31512943
    [No Abstract]   [Full Text] [Related]  

  • 19. Data structures for computational compound promiscuity analysis and exemplary applications to inhibitors of the human kinome.
    Miljković F; Bajorath J
    J Comput Aided Mol Des; 2020 Jan; 34(1):1-10. PubMed ID: 31792884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Balancing novelty with confined chemical space in modern drug discovery.
    Medina-Franco JL; Martinez-Mayorga K; Meurice N
    Expert Opin Drug Discov; 2014 Feb; 9(2):151-65. PubMed ID: 24350718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.