These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 31416369)

  • 21. Highly Promiscuous Small Molecules from Biological Screening Assays Include Many Pan-Assay Interference Compounds but Also Candidates for Polypharmacology.
    Gilberg E; Jasial S; Stumpfe D; Dimova D; Bajorath J
    J Med Chem; 2016 Nov; 59(22):10285-10290. PubMed ID: 27809519
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly Accurate Filters to Flag Frequent Hitters in AlphaScreen Assays by Suggesting their Mechanism.
    Ghosh D; Koch U; Hadian K; Sattler M; Tetko IV
    Mol Inform; 2022 Mar; 41(3):e2100151. PubMed ID: 34676998
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of Small-Molecule Frequent Hitters from AlphaScreen High-Throughput Screens.
    Schorpp K; Rothenaigner I; Salmina E; Reinshagen J; Low T; Brenke JK; Gopalakrishnan J; Tetko IV; Gul S; Hadian K
    J Biomol Screen; 2014 Jun; 19(5):715-26. PubMed ID: 24371213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rhodanine as a scaffold in drug discovery: a critical review of its biological activities and mechanisms of target modulation.
    Tomašić T; Peterlin Mašič L
    Expert Opin Drug Discov; 2012 Jul; 7(7):549-60. PubMed ID: 22607309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Is chemical synthetic accessibility computationally predictable for drug and lead-like molecules? A comparative assessment between medicinal and computational chemists.
    Bonnet P
    Eur J Med Chem; 2012 Aug; 54():679-89. PubMed ID: 22749644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep Learning in Chemistry.
    Mater AC; Coote ML
    J Chem Inf Model; 2019 Jun; 59(6):2545-2559. PubMed ID: 31194543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring Activity Profiles of PAINS and Their Structural Context in Target-Ligand Complexes.
    Siramshetty VB; Preissner R; Gohlke BO
    J Chem Inf Model; 2018 Sep; 58(9):1847-1857. PubMed ID: 30105913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fragment library design: using cheminformatics and expert chemists to fill gaps in existing fragment libraries.
    Kutchukian PS; So SS; Fischer C; Waller CL
    Methods Mol Biol; 2015; 1289():43-53. PubMed ID: 25709032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrating virtual screening and combinatorial chemistry for accelerated drug discovery.
    López-Vallejo F; Caulfield T; Martínez-Mayorga K; Giulianotti MA; Nefzi A; Houghten RA; Medina-Franco JL
    Comb Chem High Throughput Screen; 2011 Jul; 14(6):475-87. PubMed ID: 21521151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cheminformatics in the Identification of Drug Classes for the Treatment of Type 2 Diabetes.
    Finn PW
    Methods Mol Biol; 2020; 2076():71-84. PubMed ID: 31586322
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring the biological promiscuity of high-throughput screening hits through DFT calculations.
    Curpăn R; Avram S; Vianello R; Bologa C
    Bioorg Med Chem; 2014 Apr; 22(8):2461-8. PubMed ID: 24656802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stabilization of protein-protein interactions in drug discovery.
    Andrei SA; Sijbesma E; Hann M; Davis J; O'Mahony G; Perry MWD; Karawajczyk A; Eickhoff J; Brunsveld L; Doveston RG; Milroy LG; Ottmann C
    Expert Opin Drug Discov; 2017 Sep; 12(9):925-940. PubMed ID: 28695752
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Macromolecular target prediction by self-organizing feature maps.
    Schneider G; Schneider P
    Expert Opin Drug Discov; 2017 Mar; 12(3):271-277. PubMed ID: 27997811
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A general strategy for diversifying complex natural products to polycyclic scaffolds with medium-sized rings.
    Zhao C; Ye Z; Ma ZX; Wildman SA; Blaszczyk SA; Hu L; Guizei IA; Tang W
    Nat Commun; 2019 Sep; 10(1):4015. PubMed ID: 31488839
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Getting the most out of PubChem for virtual screening.
    Kim S
    Expert Opin Drug Discov; 2016 Sep; 11(9):843-55. PubMed ID: 27454129
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine Learning Distinguishes with High Accuracy between Pan-Assay Interference Compounds That Are Promiscuous or Represent Dark Chemical Matter.
    Jasial S; Gilberg E; Blaschke T; Bajorath J
    J Med Chem; 2018 Nov; 61(22):10255-10264. PubMed ID: 30422657
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drugs as habitable planets in the space of dark chemical matter.
    Siramshetty VB; Preissner R
    Drug Discov Today; 2018 Mar; 23(3):481-486. PubMed ID: 28709991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phantom PAINS: Problems with the Utility of Alerts for Pan-Assay INterference CompoundS.
    Capuzzi SJ; Muratov EN; Tropsha A
    J Chem Inf Model; 2017 Mar; 57(3):417-427. PubMed ID: 28165734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-stoichiometric inhibition in integrated lead finding - a literature review.
    Klumpp M
    Expert Opin Drug Discov; 2016; 11(2):149-62. PubMed ID: 26653534
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving the efficacy-safety balance of polypharmacology in multi-target drug discovery.
    Ravikumar B; Aittokallio T
    Expert Opin Drug Discov; 2018 Feb; 13(2):179-192. PubMed ID: 29233023
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.