BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31416554)

  • 21. Iterative refinement of point correspondences for 3D statistical shape models.
    Seshamani S; Chintalapani G; Taylor R
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 2):417-25. PubMed ID: 21995056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Virtual reconstruction of pelvic tumor defects based on a gender-specific statistical shape model.
    Krol Z; Skadlubowicz P; Hefti F; Krieg AH
    Comput Aided Surg; 2013; 18(5-6):142-53. PubMed ID: 23488562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Statistical shape and appearance models of bones.
    Sarkalkan N; Weinans H; Zadpoor AA
    Bone; 2014 Mar; 60():129-40. PubMed ID: 24334169
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated liver segmentation from a postmortem CT scan based on a statistical shape model.
    Saito A; Yamamoto S; Nawano S; Shimizu A
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):205-221. PubMed ID: 27659283
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Virtual reconstruction of bilateral midfacial defects by using statistical shape modeling.
    Fuessinger MA; Schwarz S; Neubauer J; Cornelius CP; Gass M; Poxleitner P; Zimmerer R; Metzger MC; Schlager S
    J Craniomaxillofac Surg; 2019 Jul; 47(7):1054-1059. PubMed ID: 30982558
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automated segmentation of the liver from 3D CT images using probabilistic atlas and multi-level statistical shape model.
    Okada T; Shimada R; Sato Y; Hori M; Yokota K; Nakamoto M; Chen YW; Nakamura H; Tamura S
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 1):86-93. PubMed ID: 18051047
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CT-based automated planning of acetabular cup for total hip arthroplasty (THA) based on hybrid use of two statistical atlases.
    Kagiyama Y; Otomaru I; Takao M; Sugano N; Nakamoto M; Yokota F; Tomiyama N; Tada Y; Sato Y
    Int J Comput Assist Radiol Surg; 2016 Dec; 11(12):2253-2271. PubMed ID: 27344334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A hybrid statistical morphometry free-form deformation approach to 3D personalized foot-ankle models.
    Xiang L; Gu Y; Shim V; Yeung T; Wang A; Fernandez J
    J Biomech; 2024 May; 168():112120. PubMed ID: 38677027
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stacked sparse autoencoder networks and statistical shape models for automatic staging of distal femur trochlear dysplasia.
    Cerveri P; Belfatto A; Baroni G; Manzotti A
    Int J Med Robot; 2018 Dec; 14(6):e1947. PubMed ID: 30073759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A shape-guided deformable model with evolutionary algorithm initialization for 3D soft tissue segmentation.
    Heimann T; Münzing S; Meinzer HP; Wolf I
    Inf Process Med Imaging; 2007; 20():1-12. PubMed ID: 17633684
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low-dose three-dimensional reconstruction of the femur with unit free-form deformation.
    Zeng X; Wang C; Zhou H; Wei S; Chen X
    Med Phys; 2014 Aug; 41(8):081911. PubMed ID: 25086542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A study on graphical model structure for representing statistical shape model of point distribution model.
    Sawada Y; Hontani H
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 2):470-7. PubMed ID: 23286082
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.
    Väänänen SP; Grassi L; Flivik G; Jurvelin JS; Isaksson H
    Med Image Anal; 2015 Aug; 24(1):125-134. PubMed ID: 26148575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computation of a probabilistic statistical shape model in a maximum-a-posteriori framework.
    Hufnagel H; Pennec X; Ehrhardt J; Ayache N; Handels H
    Methods Inf Med; 2009; 48(4):314-9. PubMed ID: 19562228
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigation of the Average Shape and Principal Variations of the Human Talus Bone Using Statistic Shape Model.
    Liu T; Jomha NM; Adeeb S; El-Rich M; Westover L
    Front Bioeng Biotechnol; 2020; 8():656. PubMed ID: 32714904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D active shape model segmentation with nonlinear shape priors.
    Kirschner M; Becker M; Wesarg S
    Med Image Comput Comput Assist Interv; 2011; 14(Pt 2):492-9. PubMed ID: 21995065
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patient-specific polyetheretherketone facial implants in a computer-aided planning workflow.
    Guevara-Rojas G; Figl M; Schicho K; Seemann R; Traxler H; Vacariu A; Carbon CC; Ewers R; Watzinger F
    J Oral Maxillofac Surg; 2014 Sep; 72(9):1801-12. PubMed ID: 24679957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Virtual anatomical reconstruction of large acetabular bone defects using a statistical shape model.
    Vanden Berghe P; Demol J; Gelaude F; Vander Sloten J
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):577-586. PubMed ID: 27957883
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deformable 2D-3D registration of the pelvis with a limited field of view, using shape statistics.
    Sadowsky O; Chintalapani G; Taylor RH
    Med Image Comput Comput Assist Interv; 2007; 10(Pt 2):519-26. PubMed ID: 18044608
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anatomical background for the development of preformed cranioplasty implants.
    Kamer L; Noser H; Hammer B
    J Craniofac Surg; 2013 Jan; 24(1):264-8. PubMed ID: 23348297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.