These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 31416561)

  • 1. Design of smart EEG cap.
    Lin BS; Huang YK; Lin BS
    Comput Methods Programs Biomed; 2019 Sep; 178():41-46. PubMed ID: 31416561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.
    Lo CC; Chien TY; Chen YC; Tsai SH; Fang WC; Lin BS
    Sensors (Basel); 2016 Feb; 16(2):213. PubMed ID: 26861347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of the multi-channel electroencephalography-based brain-computer interface with novel dry sensors.
    Wu SL; Liao LD; Liou CH; Chen SA; Ko LW; Chen BW; Wang PS; Chen SF; Lin CT
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1793-7. PubMed ID: 23366259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a Wearable Motor-Imagery-Based Brain-Computer Interface.
    Lin BS; Pan JS; Chu TY; Lin BS
    J Med Syst; 2016 Mar; 40(3):71. PubMed ID: 26748791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel active comb-shaped dry electrode for EEG measurement in hairy site.
    Huang YJ; Wu CY; Wong AM; Lin BS
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):256-63. PubMed ID: 25137719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Portable brain-computer interface based on novel convolutional neural network.
    Zhang Y; Zhang X; Sun H; Fan Z; Zhong X
    Comput Biol Med; 2019 Apr; 107():248-256. PubMed ID: 30856388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation.
    Liao LD; Wang IJ; Chen SF; Chang JY; Lin CT
    Sensors (Basel); 2011; 11(6):5819-34. PubMed ID: 22163929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Inflatable and Wearable Wireless System for Making 32-Channel Electroencephalogram Measurements.
    Yu YH; Lu SW; Chuang CH; King JT; Chang CL; Chen SA; Chen SF; Lin CT
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jul; 24(7):806-13. PubMed ID: 26780814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wireless instrumentation system based on dry electrodes for acquiring EEG signals.
    Dias NS; Carmo JP; Mendes PM; Correia JH
    Med Eng Phys; 2012 Sep; 34(7):972-81. PubMed ID: 22153322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dry and noncontact EEG sensors for mobile brain-computer interfaces.
    Chi YM; Wang YT; Wang Y; Maier C; Jung TP; Cauwenberghs G
    IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):228-35. PubMed ID: 22180514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of Wearable Headset with Steady State Visually Evoked Potential-Based Brain Computer Interface.
    Lin BS; Lin BS; Yen TH; Hsu CC; Wang YC
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31658616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wireless Soft Scalp Electronics and Virtual Reality System for Motor Imagery-Based Brain-Machine Interfaces.
    Mahmood M; Kwon S; Kim H; Kim YS; Siriaraya P; Choi J; Otkhmezuri B; Kang K; Yu KJ; Jang YC; Ang CS; Yeo WH
    Adv Sci (Weinh); 2021 Oct; 8(19):e2101129. PubMed ID: 34272934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular, bluetooth enabled, wireless electroencephalograph (EEG) platform.
    Lovelace JA; Witt TS; Beyette FR
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6361-4. PubMed ID: 24111196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular multipin electrodes for comfortable dry EEG.
    Fiedler P; Strohmeier D; Hunold A; Griebel S; Muhle R; Schreiber M; Pedrosa P; Vasconcelos B; Fonseca C; Vaz F; Haueisen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5705-5708. PubMed ID: 28269550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel dry polymer foam electrodes for long-term EEG measurement.
    Lin CT; Liao LD; Liu YH; Wang IJ; Lin BS; Chang JY
    IEEE Trans Biomed Eng; 2011 May; 58(5):1200-7. PubMed ID: 21193371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Multipin Electrode Cap System for Dry Electroencephalography.
    Fiedler P; Pedrosa P; Griebel S; Fonseca C; Vaz F; Supriyanto E; Zanow F; Haueisen J
    Brain Topogr; 2015 Sep; 28(5):647-656. PubMed ID: 25998854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of a wireless dry electrode system for electroencephalography.
    Wyckoff SN; Sherlin LH; Ford NL; Dalke D
    J Neuroeng Rehabil; 2015 Oct; 12():95. PubMed ID: 26520574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wireless multichannel EEG recording platform.
    Filipe S; Charvet G; Foerster M; Porcherot J; Bêche JF; Bonnet S; Audebert P; Régis G; Zongo B; Robinet S; Condemine C; Mestais C; Guillemaud R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6319-22. PubMed ID: 22255783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic comparison between a wireless EEG system with dry electrodes and a wired EEG system with wet electrodes.
    Kam JWY; Griffin S; Shen A; Patel S; Hinrichs H; Heinze HJ; Deouell LY; Knight RT
    Neuroimage; 2019 Jan; 184():119-129. PubMed ID: 30218769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.
    Siuly ; Li Y; Paul Wen P
    Comput Methods Programs Biomed; 2014 Mar; 113(3):767-80. PubMed ID: 24440135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.