These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31416592)

  • 1. American Society of Biomechanics Journal of Biomechanics Award 2018: Adaptive motor planning of center-of-mass trajectory during goal-directed walking in novel environments.
    Bucklin MA; Wu M; Brown G; Gordon KE
    J Biomech; 2019 Sep; 94():5-12. PubMed ID: 31416592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. People adapt a consistent center-of-mass trajectory in a novel force field.
    Bucklin MA; Brown G; Gordon KE
    J Neurophysiol; 2023 Feb; 129(2):298-306. PubMed ID: 36542421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimism persists when walking in unpredictable environments.
    Bucklin MA; Deol J; Brown G; Perreault EJ; Gordon KE
    Sci Rep; 2023 Apr; 13(1):6853. PubMed ID: 37100839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait variability following abrupt removal of external stabilization decreases with practice in incomplete spinal cord injury but increases in non-impaired individuals.
    Wu MM; Brown GL; Kim KA; Kim J; Gordon KE
    J Neuroeng Rehabil; 2019 Jan; 16(1):4. PubMed ID: 30612582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.
    Kannape OA; Barré A; Aminian K; Blanke O
    PLoS One; 2014; 9(1):e85560. PubMed ID: 24465601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corner height influences center of mass kinematics and path trajectory during turning.
    Fino PC; Lockhart TE; Fino NF
    J Biomech; 2015 Jan; 48(1):104-12. PubMed ID: 25468662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prior uncertainty impedes discrete locomotor adaptation.
    Jiang A; Grover FM; Bucklin M; Deol J; Shafer A; Gordon KE
    PLoS One; 2024; 19(2):e0291284. PubMed ID: 38363788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apparent and Actual Trajectory Control Depend on the Behavioral Context in Upper Limb Motor Tasks.
    Cluff T; Scott SH
    J Neurosci; 2015 Sep; 35(36):12465-76. PubMed ID: 26354914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timing-specific transfer of adapted muscle activity after walking in an elastic force field.
    Blanchette A; Bouyer LJ
    J Neurophysiol; 2009 Jul; 102(1):568-77. PubMed ID: 19420121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Movement augmentation to evaluate human control of locomotor stability.
    Brown G; Wu MM; Huang FC; Gordon KE
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():66-69. PubMed ID: 29059812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. When locomotion is used to interact with the environment: investigation of the link between emotions and the twofold goal-directed locomotion in humans.
    Vernazza-Martin S; Longuet S; Damry T; Chamot JM; Dru V
    Exp Brain Res; 2015 Oct; 233(10):2913-24. PubMed ID: 26126802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Adaptation of Pelvic Motion by Applying 3-dimensional Guidance Forces Using TPAD.
    Kang J; Vashista V; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1558-1567. PubMed ID: 28287978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Center of mass trajectory and orientation to ankle and knee in sagittal plane is maintained with forward lean when backpack load changes during treadmill walking.
    Caron RR; Wagenaar RC; Lewis CL; Saltzman E; Holt KG
    J Biomech; 2013 Jan; 46(1):70-6. PubMed ID: 23149079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Collaborative robotic biomechanical interactions and gait adjustments in young, non-impaired individuals.
    Dionisio VC; Brown DA
    J Neuroeng Rehabil; 2016 Jun; 13(1):57. PubMed ID: 27306027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The time course for kinetic versus kinematic planning of goal-directed human motor behavior.
    Vesia M; Vander H; Yan X; Sergio LE
    Exp Brain Res; 2005 Jan; 160(3):290-301. PubMed ID: 15309357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-Stroke Adaptation of Lateral Foot Placement Coordination in Variable Environments.
    Dragunas AC; Cornwell T; Lopez-Rosado R; Gordon KE
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():731-739. PubMed ID: 33835919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanics of Step Initiation After Balance Recovery With Implications for Humanoid Robot Locomotion.
    Miller Buffinton C; Buffinton EM; Bieryla KA; Pratt JE
    J Biomech Eng; 2016 Mar; 138(3):4032468. PubMed ID: 26769330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Movement variability emerges in gait as adaptation to task constraints in dynamic environments.
    Caballero C; Davids K; Heller B; Wheat J; Moreno FJ
    Gait Posture; 2019 May; 70():1-5. PubMed ID: 30771594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Humans use multi-objective control to regulate lateral foot placement when walking.
    Dingwell JB; Cusumano JP
    PLoS Comput Biol; 2019 Mar; 15(3):e1006850. PubMed ID: 30840620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.