BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31417391)

  • 1. Attention Based Visual Analysis for Fast Grasp Planning With a Multi-Fingered Robotic Hand.
    Deng Z; Gao G; Frintrop S; Sun F; Zhang C; Zhang J
    Front Neurorobot; 2019; 13():60. PubMed ID: 31417391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grasping Force Control of Multi-Fingered Robotic Hands through Tactile Sensing for Object Stabilization.
    Deng Z; Jonetzko Y; Zhang L; Zhang J
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GR-ConvNet v2: A Real-Time Multi-Grasp Detection Network for Robotic Grasping.
    Kumra S; Joshi S; Sahin F
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A neural learning approach for simultaneous object detection and grasp detection in cluttered scenes.
    Zhang Y; Xie L; Li Y; Li Y
    Front Comput Neurosci; 2023; 17():1110889. PubMed ID: 36890968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Keypoint-Based Robotic Grasp Detection Scheme in Multi-Object Scenes.
    Li T; Wang F; Ru C; Jiang Y; Li J
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robot Intelligent Grasp of Unknown Objects Based on Multi-Sensor Information.
    Ji SQ; Huang MB; Huang HP
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30986985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Realtime Hand-Object Interaction Using Learned Grasp Space for Virtual Environments.
    Tian H; Wang C; Manocha D; Zhang X
    IEEE Trans Vis Comput Graph; 2019 Aug; 25(8):2623-2635. PubMed ID: 29994119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting Robot Hand Compliance and Environmental Constraints for Edge Grasps.
    Bimbo J; Turco E; Ghazaei Ardakani M; Pozzi M; Salvietti G; Bo V; Malvezzi M; Prattichizzo D
    Front Robot AI; 2019; 6():135. PubMed ID: 33501150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-stage grasp detection method for sequential robotic grasping in stacking scenarios.
    Zhang J; Yin B; Zhong Y; Wei Q; Zhao J; Bilal H
    Math Biosci Eng; 2024 Feb; 21(2):3448-3472. PubMed ID: 38454735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Depth Image-Based Deep Learning of Grasp Planning for Textureless Planar-Faced Objects in Vision-Guided Robotic Bin-Picking.
    Jiang P; Ishihara Y; Sugiyama N; Oaki J; Tokura S; Sugahara A; Ogawa A
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32012874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pixel-Reasoning-Based Robotics Fine Grasping for Novel Objects with Deep EDINet Structure.
    Shi C; Miao C; Zhong X; Zhong X; Hu H; Liu Q
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Practical Multi-Stage Grasp Detection Method for Kinova Robot in Stacked Environments.
    Dong X; Jiang Y; Zhao F; Xia J
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robot Grasp Planning: A Learning from Demonstration-Based Approach.
    Wang K; Fan Y; Sakuma I
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of human grasping behavior: correlating tasks, objects and grasps.
    Feix T; Bullock IM; Dollar AM
    IEEE Trans Haptics; 2014; 7(4):430-41. PubMed ID: 25532148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward Human-Like Grasp: Functional Grasp by Dexterous Robotic Hand Via Object-Hand Semantic Representation.
    Zhu T; Wu R; Hang J; Lin X; Sun Y
    IEEE Trans Pattern Anal Mach Intell; 2023 Oct; 45(10):12521-12534. PubMed ID: 37134035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Visual Data-Driven Spatiotemporal Deformations for Non-Rigid Object Grasping Using Robot Hands.
    Mateo CM; Gil P; Torres F
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27164102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DGCM-Net: Dense Geometrical Correspondence Matching Network for Incremental Experience-Based Robotic Grasping.
    Patten T; Park K; Vincze M
    Front Robot AI; 2020; 7():120. PubMed ID: 33501286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potentiation of two components of the reach-to-grasp action during object categorisation in visual memory.
    Derbyshire N; Ellis R; Tucker M
    Acta Psychol (Amst); 2006 May; 122(1):74-98. PubMed ID: 16376844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-Orbit Robotic Grasping of a Spent Rocket Stage: Grasp Stability Analysis and Experimental Results.
    Mavrakis N; Hao Z; Gao Y
    Front Robot AI; 2021; 8():652681. PubMed ID: 34222349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.