These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31417391)

  • 41. Development and Grasp Stability Estimation of Sensorized Soft Robotic Hand.
    Khin PM; Low JH; Ang MH; Yeow CH
    Front Robot AI; 2021; 8():619390. PubMed ID: 33869293
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Manipulation of Unknown Objects to Improve the Grasp Quality Using Tactile Information.
    Montaño A; Suárez R
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29751533
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stable Grasp Control With a Robotic Exoskeleton Glove.
    Vanteddu T; Ben-Tzvi P
    J Mech Robot; 2020 Dec; 12(6):061015. PubMed ID: 34168720
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A soft-contact and wrench based approach to study grasp planning and execution.
    Singh T; Ambike S
    J Biomech; 2015 Nov; 48(14):3961-7. PubMed ID: 26475219
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Infants' visual anticipation of object structure in grasp planning.
    Barrett TM; Traupman E; Needham A
    Infant Behav Dev; 2008 Jan; 31(1):1-9. PubMed ID: 17624439
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Human grasp point selection.
    Kleinholdermann U; Franz VH; Gegenfurtner KR
    J Vis; 2013 Jul; 13(8):. PubMed ID: 23887046
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Implicit Grasp Force Representation in Human Motor Cortical Recordings.
    Downey JE; Weiss JM; Flesher SN; Thumser ZC; Marasco PD; Boninger ML; Gaunt RA; Collinger JL
    Front Neurosci; 2018; 12():801. PubMed ID: 30429772
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Deep Learning Method for Vision Based Force Prediction of a Soft Fin Ray Gripper Using Simulation Data.
    De Barrie D; Pandya M; Pandya H; Hanheide M; Elgeneidy K
    Front Robot AI; 2021; 8():631371. PubMed ID: 34113655
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Autonomous Vision-Based Aerial Grasping for Rotorcraft Unmanned Aerial Vehicles.
    Lin L; Yang Y; Cheng H; Chen X
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382629
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prehension movements directed to approaching objects: influence of stimulus velocity on the transport and the grasp components.
    Chieffi S; Fogassi L; Gallese V; Gentilucci M
    Neuropsychologia; 1992 Oct; 30(10):877-97. PubMed ID: 1436435
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The development of the grasp height effect as a measure of efficient action planning in children.
    Jovanovic B; Schwarzer G
    J Exp Child Psychol; 2017 Jan; 153():74-82. PubMed ID: 27701010
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Grasp quality measures: review and performance.
    Roa MA; Suárez R
    Auton Robots; 2015; 38(1):65-88. PubMed ID: 26074671
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vision-based grasp learning of an anthropomorphic hand-arm system in a synergy-based control framework.
    Ficuciello F; Migliozzi A; Laudante G; Falco P; Siciliano B
    Sci Robot; 2019 Jan; 4(26):. PubMed ID: 33137760
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mobile Manipulation Integrating Enhanced AMCL High-Precision Location and Dynamic Tracking Grasp.
    Zhou H; Chou W; Tuo W; Rong Y; Xu S
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33238491
    [TBL] [Abstract][Full Text] [Related]  

  • 55. On the relations between action planning, object identification, and motor representations of observed actions and objects.
    Vainio L; Symes E; Ellis R; Tucker M; Ottoboni G
    Cognition; 2008 Aug; 108(2):444-65. PubMed ID: 18452910
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A multi-scale robotic tool grasping method for robot state segmentation masks.
    Xue T; Zheng D; Yan J; Liu Y
    Front Neurorobot; 2022; 16():1082550. PubMed ID: 36704717
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aiding Grasp Synthesis for Novel Objects Using Heuristic-Based and Data-Driven Active Vision Methods.
    Natarajan S; Brown G; Calli B
    Front Robot AI; 2021; 8():696587. PubMed ID: 34336936
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Experimental validation of a reach-and grasp optimization algorithm inspired to human arm-hand control.
    Cordella F; Zollo L; Salerno A; Guglielmelli E; Siciliano B
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8150-3. PubMed ID: 22256233
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Estimating the Orientation of Objects from Tactile Sensing Data Using Machine Learning Methods and Visual Frames of Reference.
    Prado da Fonseca V; Alves de Oliveira TE; Petriu EM
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31108951
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A method for robotic grasping based on improved Gaussian mixture model.
    Tao Y; Ren F; Chen YD; Wang TM; Zou Y; Chen CY; Jiang S
    Math Biosci Eng; 2019 Dec; 17(2):1495-1510. PubMed ID: 32233591
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.