These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31417392)

  • 1. From Rough to Precise: Human-Inspired Phased Target Learning Framework for Redundant Musculoskeletal Systems.
    Zhou J; Chen J; Deng H; Qiao H
    Front Neurorobot; 2019; 13():61. PubMed ID: 31417392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimum trajectory learning in musculoskeletal systems with model predictive control and deep reinforcement learning.
    Denizdurduran B; Markram H; Gewaltig MO
    Biol Cybern; 2022 Dec; 116(5-6):711-726. PubMed ID: 35951117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical Motion Learning for Goal-Oriented Movements With Speed-Accuracy Tradeoff of a Musculoskeletal System.
    Zhou J; Zhong S; Wu W
    IEEE Trans Cybern; 2022 Nov; 52(11):11453-11466. PubMed ID: 34520384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion planning framework based on dual-agent DDPG method for dual-arm robots guided by human joint angle constraints.
    Liang K; Zha F; Guo W; Liu S; Wang P; Sun L
    Front Neurorobot; 2024; 18():1362359. PubMed ID: 38455735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cognitively inspired reinforcement learning architecture and its application to giant-swing motion control.
    Uragami D; Takahashi T; Matsuo Y
    Biosystems; 2014 Feb; 116():1-9. PubMed ID: 24296286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcement Learning-Based Reactive Obstacle Avoidance Method for Redundant Manipulators.
    Shen Y; Jia Q; Huang Z; Wang R; Fei J; Chen G
    Entropy (Basel); 2022 Feb; 24(2):. PubMed ID: 35205573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stiffness modulation of redundant musculoskeletal systems.
    Stanev D; Moustakas K
    J Biomech; 2019 Mar; 85():101-107. PubMed ID: 30709554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning and Reusing Quadruped Robot Movement Skills from Biological Dogs for Higher-Level Tasks.
    Wan Q; Luo A; Meng Y; Zhang C; Chi W; Zhang S; Liu Y; Zhu Q; Kong S; Yu J
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38202890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A musculoskeletal model driven by muscle synergy-derived excitations for hand and wrist movements.
    Zhao J; Yu Y; Wang X; Ma S; Sheng X; Zhu X
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 34986472
    [No Abstract]   [Full Text] [Related]  

  • 11. Target Tracking Control of a Biomimetic Underwater Vehicle Through Deep Reinforcement Learning.
    Wang Y; Tang C; Wang S; Cheng L; Wang R; Tan M; Hou Z
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):3741-3752. PubMed ID: 33560993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on deep reinforcement learning basketball robot shooting skills improvement based on end to end architecture and multi-modal perception.
    Zhang J; Tao D
    Front Neurorobot; 2023; 17():1274543. PubMed ID: 37908406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and control of a pneumatic musculoskeletal biped robot.
    Zang X; Liu Y; Liu X; Zhao J
    Technol Health Care; 2016 Apr; 24 Suppl 2():S443-54. PubMed ID: 27163303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward a Brain-Inspired System: Deep Recurrent Reinforcement Learning for a Simulated Self-Driving Agent.
    Chen J; Chen J; Zhang R; Hu X
    Front Neurorobot; 2019; 13():40. PubMed ID: 31316366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement learning coupled with finite element modeling for facial motion learning.
    Nguyen DP; Ho Ba Tho MC; Dao TT
    Comput Methods Programs Biomed; 2022 Jun; 221():106904. PubMed ID: 35636356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reinforcement learning enhanced pseudo-inverse approach to self-collision avoidance of redundant robots.
    Hong T; Li W; Huang K
    Front Neurorobot; 2024; 18():1375309. PubMed ID: 38606052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target-Following Control of a Biomimetic Autonomous System Based on Predictive Reinforcement Learning.
    Wang Y; Wang J; Kang S; Yu J
    Biomimetics (Basel); 2024 Jan; 9(1):. PubMed ID: 38248607
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.