These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31417392)

  • 21. Online kernel-based learning for task-space tracking robot control.
    Nguyen-Tuong D; Peters J
    IEEE Trans Neural Netw Learn Syst; 2012 Sep; 23(9):1417-25. PubMed ID: 24807925
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A neural network model for timing control with reinforcement.
    Wang J; El-Jayyousi Y; Ozden I
    Front Comput Neurosci; 2022; 16():918031. PubMed ID: 36277612
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long-Term Tracking of Evasive Urban Target Based on Intention Inference and Deep Reinforcement Learning.
    Yan P; Guo J; Su X; Bai C
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; PP():. PubMed ID: 37566499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioinspired Gain-Modulated Recurrent Neural Network for Controlling Musculoskeletal Robot.
    Zhong S; Zhou J; Qiao H
    IEEE Trans Neural Netw Learn Syst; 2021 Apr; PP():. PubMed ID: 33861712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RatInABox, a toolkit for modelling locomotion and neuronal activity in continuous environments.
    George TM; Rastogi M; de Cothi W; Clopath C; Stachenfeld K; Barry C
    Elife; 2024 Feb; 13():. PubMed ID: 38334473
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient Actor-Critic Reinforcement Learning With Embodiment of Muscle Tone for Posture Stabilization of the Human Arm.
    Iwamoto M; Kato D
    Neural Comput; 2021 Jan; 33(1):129-156. PubMed ID: 33080164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DrugEx v2: de novo design of drug molecules by Pareto-based multi-objective reinforcement learning in polypharmacology.
    Liu X; Ye K; van Vlijmen HWT; Emmerich MTM; IJzerman AP; van Westen GJP
    J Cheminform; 2021 Nov; 13(1):85. PubMed ID: 34772471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Actor-Dueling-Critic Method for Reinforcement Learning.
    Wu M; Gao Y; Jung A; Zhang Q; Du S
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935035
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inertia-Constrained Reinforcement Learning to Enhance Human Motor Control Modeling.
    Korivand S; Jalili N; Gong J
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904901
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biological arm motion through reinforcement learning.
    Izawa J; Kondo T; Ito K
    Biol Cybern; 2004 Jul; 91(1):10-22. PubMed ID: 15309543
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Combined Feedback Feedforward Control of a 3-Link Musculoskeletal System Based on the Iterative Training Method.
    Valizadeh A; Akbari AA
    Biomed Res Int; 2021; 2021():8701869. PubMed ID: 34790824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulating human walking: a model-based reinforcement learning approach with musculoskeletal modeling.
    Su B; Gutierrez-Farewik EM
    Front Neurorobot; 2023; 17():1244417. PubMed ID: 37901705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ReadySim: A computational framework for building explicit finite element musculoskeletal simulations directly from motion laboratory data.
    Hume DR; Rullkoetter PJ; Shelburne KB
    Int J Numer Method Biomed Eng; 2020 Nov; 36(11):e3396. PubMed ID: 32812382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. LORM: a novel reinforcement learning framework for biped gait control.
    Zhang W; Jiang Y; Farrukh FUD; Zhang C; Zhang D; Wang G
    PeerJ Comput Sci; 2022; 8():e927. PubMed ID: 35494792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic sparse coding-based value estimation network for deep reinforcement learning.
    Zhao H; Li Z; Su W; Xie S
    Neural Netw; 2023 Nov; 168():180-193. PubMed ID: 37757726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep Reinforcement Learning for Data Association in Cell Tracking.
    Wang J; Su X; Zhao L; Zhang J
    Front Bioeng Biotechnol; 2020; 8():298. PubMed ID: 32328484
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Imitation and mirror systems in robots through Deep Modality Blending Networks.
    Seker MY; Ahmetoglu A; Nagai Y; Asada M; Oztop E; Ugur E
    Neural Netw; 2022 Feb; 146():22-35. PubMed ID: 34839090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generating Human Arm Kinematics Using Reinforcement Learning to Train Active Muscle Behavior in Automotive Research.
    Mukherjee S; Perez-Rapela D; Forman JL; Panzer MB
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36128755
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Target spike patterns enable efficient and biologically plausible learning for complex temporal tasks.
    Muratore P; Capone C; Paolucci PS
    PLoS One; 2021; 16(2):e0247014. PubMed ID: 33592040
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm.
    Dura-Bernal S; Zhou X; Neymotin SA; Przekwas A; Francis JT; Lytton WW
    Front Neurorobot; 2015; 9():13. PubMed ID: 26635598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.