These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31417392)

  • 41. UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy.
    Xie J; Peng X; Wang H; Niu W; Zheng X
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33019747
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Maximum Power Point Tracking of Photovoltaic System Based on Reinforcement Learning.
    Chou KY; Yang ST; Chen AY
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31752427
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Soft DAgger: Sample-Efficient Imitation Learning for Control of Soft Robots.
    Nazeer MS; Laschi C; Falotico E
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837107
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An Off-Policy Reinforcement Learning-Based Adaptive Optimization Method for Dynamic Resource Allocation Problem.
    He B; Meng Y; Tang L
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; PP():. PubMed ID: 38090867
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Deep reinforcement learning for modeling human locomotion control in neuromechanical simulation.
    Song S; Kidziński Ł; Peng XB; Ong C; Hicks J; Levine S; Atkeson CG; Delp SL
    J Neuroeng Rehabil; 2021 Aug; 18(1):126. PubMed ID: 34399772
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Curiosity-driven recommendation strategy for adaptive learning via deep reinforcement learning.
    Han R; Chen K; Tan C
    Br J Math Stat Psychol; 2020 Nov; 73(3):522-540. PubMed ID: 32080828
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Survey of Brain-Inspired Intelligent Robots: Integration of Vision, Decision, Motion Control, and Musculoskeletal Systems.
    Qiao H; Chen J; Huang X
    IEEE Trans Cybern; 2022 Oct; 52(10):11267-11280. PubMed ID: 33909584
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rethinking statistical learning as a continuous dynamic stochastic process, from the motor systems perspective.
    Vaskevich A; Torres EB
    Front Neurosci; 2022; 16():1033776. PubMed ID: 36425474
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Robot cognitive control with a neurophysiologically inspired reinforcement learning model.
    Khamassi M; Lallée S; Enel P; Procyk E; Dominey PF
    Front Neurorobot; 2011; 5():1. PubMed ID: 21808619
    [TBL] [Abstract][Full Text] [Related]  

  • 50. MO-MIX: Multi-Objective Multi-Agent Cooperative Decision-Making With Deep Reinforcement Learning.
    Hu T; Luo B; Yang C; Huang T
    IEEE Trans Pattern Anal Mach Intell; 2023 Oct; 45(10):12098-12112. PubMed ID: 37285257
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Constrained Deep Q-Learning Gradually Approaching Ordinary Q-Learning.
    Ohnishi S; Uchibe E; Yamaguchi Y; Nakanishi K; Yasui Y; Ishii S
    Front Neurorobot; 2019; 13():103. PubMed ID: 31920613
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A computational framework for simultaneous estimation of muscle and joint contact forces and body motion using optimization and surrogate modeling.
    Eskinazi I; Fregly BJ
    Med Eng Phys; 2018 Apr; 54():56-64. PubMed ID: 29487037
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reinforcement Learning Model With Dynamic State Space Tested on Target Search Tasks for Monkeys: Extension to Learning Task Events.
    Sakamoto K; Yamada H; Kawaguchi N; Furusawa Y; Saito N; Mushiake H
    Front Comput Neurosci; 2022; 16():784604. PubMed ID: 35720772
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spike-based Motion Estimation for Object Tracking through Bio-inspired Unsupervised Learning.
    Zheng Y; Yu Z; Wang S; Huang T
    IEEE Trans Image Process; 2022 Dec; PP():. PubMed ID: 37015554
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Learn to Steer through Deep Reinforcement Learning.
    Wu K; Esfahani MA; Yuan S; Wang H
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30373261
    [TBL] [Abstract][Full Text] [Related]  

  • 56. PaCAR: COVID-19 Pandemic Control Decision Making via Large-Scale Agent-Based Modeling and Deep Reinforcement Learning.
    Guo X; Chen P; Liang S; Jiao Z; Li L; Yan J; Huang Y; Liu Y; Fan W
    Med Decis Making; 2022 Nov; 42(8):1064-1077. PubMed ID: 35775610
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Optimal Adaptive-Based Neurofuzzy Control of the 3-DOF Musculoskeletal System of Human Arm in a 2D Plane.
    Valizadeh A; Akbari AA
    Appl Bionics Biomech; 2021; 2021():5514693. PubMed ID: 33880132
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Reinforcement learning using a continuous time actor-critic framework with spiking neurons.
    Frémaux N; Sprekeler H; Gerstner W
    PLoS Comput Biol; 2013 Apr; 9(4):e1003024. PubMed ID: 23592970
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gradient dynamics in reinforcement learning.
    Fabbricatore R; Palyulin VV
    Phys Rev E; 2022 Aug; 106(2-2):025315. PubMed ID: 36110020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.