These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31417533)

  • 1. Evidence of Spatial Homogeneity in an Electromethanogenic Cathodic Microbial Community.
    Ragab A; Katuri KP; Ali M; Saikaly PE
    Front Microbiol; 2019; 10():1747. PubMed ID: 31417533
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enrichment of
    Alqahtani MF; Bajracharya S; Katuri KP; Ali M; Ragab A; Michoud G; Daffonchio D; Saikaly PE
    Front Microbiol; 2019; 10():2563. PubMed ID: 31787955
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Draft Genome Sequence of
    Ragab A; Shaw DR; Katuri KP; Saikaly PE
    Microbiol Resour Announc; 2019 Nov; 8(45):. PubMed ID: 31699767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of set cathode potentials on microbial electrosynthesis system performance and biocathode methanogen function at a metatranscriptional level.
    Ragab A; Shaw DR; Katuri KP; Saikaly PE
    Sci Rep; 2020 Nov; 10(1):19824. PubMed ID: 33188217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methanogenic Biocathode Microbial Community Development and the Role of Bacteria.
    Dykstra CM; Pavlostathis SG
    Environ Sci Technol; 2017 May; 51(9):5306-5316. PubMed ID: 28368570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of a Methanogen and an Actinobacterium Dominating the Thermophilic Microbial Community of an Electromethanogenic Biocathode.
    Kobayashi H; Toyoda R; Miyamoto H; Nakasugi Y; Momoi Y; Nakamura K; Fu Q; Maeda H; Goda T; Sato K
    Archaea; 2021; 2021():8865133. PubMed ID: 33746613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A variety of hydrogenotrophic enrichment cultures catalyse cathodic reactions.
    Saheb-Alam S; Persson F; Wilén BM; Hermansson M; Modin O
    Sci Rep; 2019 Feb; 9(1):2356. PubMed ID: 30787309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature dependence of bioelectrochemical CO
    Yang HY; Bao BL; Liu J; Qin Y; Wang YR; Su KZ; Han JC; Mu Y
    Bioelectrochemistry; 2018 Feb; 119():180-188. PubMed ID: 29054074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes.
    Saheb-Alam S; Singh A; Hermansson M; Persson F; Schnürer A; Wilén BM; Modin O
    Appl Environ Microbiol; 2018 Feb; 84(4):. PubMed ID: 29222104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Sulfate Reduction and Microbial Community of Autotrophic Biocathode in Response to Externally Applied Voltage].
    Hu JP; Zeng CP; Luo HP; Liu GL; Zhang RD; Lu YB
    Huan Jing Ke Xue; 2019 Jan; 40(1):327-335. PubMed ID: 30628290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells.
    Liu Q; Ren ZJ; Huang C; Liu B; Ren N; Xing D
    Biotechnol Biofuels; 2016; 9():162. PubMed ID: 27489567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enrichment of salt-tolerant CO
    Alqahtani MF; Bajracharya S; Katuri KP; Ali M; Xu J; Alarawi MS; Saikaly PE
    Sci Total Environ; 2021 Apr; 766():142668. PubMed ID: 33077225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis.
    Fu Q; Kuramochi Y; Fukushima N; Maeda H; Sato K; Kobayashi H
    Environ Sci Technol; 2015 Jan; 49(2):1225-32. PubMed ID: 25544349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of Methanogen Communities to the Elevation of Cathode Potentials in Bioelectrochemical Reactors Amended with Magnetite.
    Gao K; Wang X; Huang J; Xia X; Lu Y
    Appl Environ Microbiol; 2021 Oct; 87(21):e0148821. PubMed ID: 34432490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition between Methanogens and Acetogens in Biocathodes: A Comparison between Potentiostatic and Galvanostatic Control.
    Molenaar SD; Saha P; Mol AR; Sleutels TH; Ter Heijne A; Buisman CJ
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28106846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enrichment of specific microbial communities by optimum applied voltages for enhanced methane production by microbial electrosynthesis in anaerobic digestion.
    Flores-Rodriguez C; Min B
    Bioresour Technol; 2020 Mar; 300():122624. PubMed ID: 31918296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A meta-analysis of acetogenic and methanogenic microbiomes in microbial electrosynthesis.
    Mills S; Dessì P; Pant D; Farràs P; Sloan WT; Collins G; Ijaz UZ
    NPJ Biofilms Microbiomes; 2022 Sep; 8(1):73. PubMed ID: 36138044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of biocathode during repeated cycles of bioelectrochemical conversion of carbon dioxide to methane.
    Baek G; Kim J; Lee S; Lee C
    Bioresour Technol; 2017 Oct; 241():1201-1207. PubMed ID: 28688737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zero-Valent Iron Enhances Biocathodic Carbon Dioxide Reduction to Methane.
    Dykstra CM; Pavlostathis SG
    Environ Sci Technol; 2017 Nov; 51(21):12956-12964. PubMed ID: 28994592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial Resource Management for Ex Situ Biomethanation of Hydrogen at Alkaline pH.
    Logroño W; Popp D; Kleinsteuber S; Sträuber H; Harms H; Nikolausz M
    Microorganisms; 2020 Apr; 8(4):. PubMed ID: 32344539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.