These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31417695)

  • 1. Generating electricity while walking with a medial-lateral oscillating load carriage device.
    Martin JP; Li Q
    R Soc Open Sci; 2019 Jul; 6(7):182021. PubMed ID: 31417695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altering Compliance of a Load Carriage Device in the Medial-Lateral Direction Reduces Peak Forces While Walking.
    Martin JP; Li Q
    Sci Rep; 2018 Sep; 8(1):13775. PubMed ID: 30214050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Load Carriage Device for Studying Medial-Lateral Stability of Walking: Design and Performance Evaluation.
    Martin JP; Li Q
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1179-1184. PubMed ID: 31374789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a biomechanical energy harvester.
    Li Q; Naing V; Donelan JM
    J Neuroeng Rehabil; 2009 Jun; 6():22. PubMed ID: 19549313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Power Backpack for Energy Harvesting and Reduced Load Impact.
    Yang Z; Yang Y; Liu F; Wang Z; Li Y; Qiu J; Xiao X; Li Z; Lu Y; Ji L; Wang ZL; Cheng J
    ACS Nano; 2021 Feb; 15(2):2611-2623. PubMed ID: 33533242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical energy harvesting: generating electricity during walking with minimal user effort.
    Donelan JM; Li Q; Naing V; Hoffer JA; Weber DJ; Kuo AD
    Science; 2008 Feb; 319(5864):807-10. PubMed ID: 18258914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generating electricity while walking with loads.
    Rome LC; Flynn L; Goldman EM; Yoo TD
    Science; 2005 Sep; 309(5741):1725-8. PubMed ID: 16151012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an energy harvesting backpack and performance evaluation.
    Shepertycky M; Zhang JT; Liu YF; Li Q
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650409. PubMed ID: 24187228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generating Electricity during Walking with a Lower Limb-Driven Energy Harvester: Targeting a Minimum User Effort.
    Shepertycky M; Li Q
    PLoS One; 2015; 10(6):e0127635. PubMed ID: 26039493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Backpack Strap Patterns on Gait Parameters in Young Adults at Self-Selected Normal and Fast Walking Speeds.
    Abaraogu UO; Ugwa WO; Nnodim O; Ezenwankwo EF
    PM R; 2017 Jul; 9(7):676-682. PubMed ID: 27780769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy cost and mechanical work of walking during load carriage in soldiers.
    Grenier JG; Peyrot N; Castells J; Oullion R; Messonnier L; Morin JB
    Med Sci Sports Exerc; 2012 Jun; 44(6):1131-40. PubMed ID: 22215177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical knee energy harvester: Design optimization and testing.
    Gad M; Lev-Ari B; Shapiro A; Ben-David C; Riemer R
    Front Robot AI; 2022; 9():998248. PubMed ID: 36274915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allowing the Load to Swing Reduces the Mechanical Energy of the Stance Leg and Improves the Lateral Stability of Human Walking.
    Yang L; Xu Y; Zhang K; Chen K; Fu C
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():429-441. PubMed ID: 33513104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Load carriage using packs: a review of physiological, biomechanical and medical aspects.
    Knapik J; Harman E; Reynolds K
    Appl Ergon; 1996 Jun; 27(3):207-16. PubMed ID: 15677062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A backpack load sharing model to evaluate lumbar and hip joint contact forces during shoulder borne and hip belt assisted load carriage.
    Sturdy JT; Sessoms PH; Silverman AK
    Appl Ergon; 2021 Jan; 90():103277. PubMed ID: 33011587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Walking With aBackpack Using Load Distribution and Dynamic Load Compensation Reduces Metabolic Cost and Adaptations to Loads.
    Park JH; Stegall P; Zhang H; Agrawal S
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1419-1430. PubMed ID: 27845667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wearable Triboelectric Nanogenerator with Ground-Coupled Electrode for Biomechanical Energy Harvesting and Sensing.
    Su K; Lin X; Liu Z; Tian Y; Peng Z; Meng B
    Biosensors (Basel); 2023 May; 13(5):. PubMed ID: 37232909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait and neuromuscular dynamics during level and uphill walking carrying military loads.
    Walsh GS; Harrison I
    Eur J Sport Sci; 2022 Sep; 22(9):1364-1373. PubMed ID: 34231431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A transition point: Assistance magnitude is a critical parameter when providing assistance during walking with an energy-removing exoskeleton or biomechanical energy harvester.
    Shepertycky M; Liu YF; Li Q
    PLoS One; 2023; 18(8):e0289811. PubMed ID: 37561773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and biomechanical effects on the human musculoskeletal system while carrying a suspended-load backpack.
    Huang L; Yang Z; Wang R; Xie L
    J Biomech; 2020 Jul; 108():109894. PubMed ID: 32636004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.