These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31417743)

  • 1. Unexpected polymerization mechanism of dilignol in the lignin growing.
    Matsushita Y; Oyabu Y; Aoki D; Fukushima K
    R Soc Open Sci; 2019 Jul; 6(7):190445. PubMed ID: 31417743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of weak interactions in lignin polymerization.
    Sánchez-González Á; Martín-Martínez FJ; Dobado JA
    J Mol Model; 2017 Mar; 23(3):80. PubMed ID: 28210878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peroxidases Bound to the Growing Lignin Polymer Produce Natural Like Extracellular Lignin in a Cell Culture of Norway Spruce.
    Warinowski T; Koutaniemi S; Kärkönen A; Sundberg I; Toikka M; Simola LK; Kilpeläinen I; Teeri TH
    Front Plant Sci; 2016; 7():1523. PubMed ID: 27803704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignin polymerization: how do plants manage the chemistry so well?
    Tobimatsu Y; Schuetz M
    Curr Opin Biotechnol; 2019 Apr; 56():75-81. PubMed ID: 30359808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lignin dehydrogenative polymerization mechanism: a poplar cell wall peroxidase directly oxidizes polymer lignin and produces in vitro dehydrogenative polymer rich in beta-O-4 linkage.
    Sasaki S; Nishida T; Tsutsumi Y; Kondo R
    FEBS Lett; 2004 Mar; 562(1-3):197-201. PubMed ID: 15044025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity.
    Anterola AM; Lewis NG
    Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic oxidative copolymerization of hydroxystilbenes and monolignols.
    Kim H; Rencoret J; Elder TJ; Del Río JC; Ralph J
    Sci Adv; 2023 Mar; 9(10):eade5519. PubMed ID: 36888720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Key Role for Apoplastic H
    Laitinen T; Morreel K; Delhomme N; Gauthier A; Schiffthaler B; Nickolov K; Brader G; Lim KJ; Teeri TH; Street NR; Boerjan W; Kärkönen A
    Plant Physiol; 2017 Jul; 174(3):1449-1475. PubMed ID: 28522458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-initiated dehydrogenative polymerization of monolignols: a quartz crystal microbalance with dissipation monitoring and atomic force microscopy study.
    Wang C; Qian C; Roman M; Glasser WG; Esker AR
    Biomacromolecules; 2013 Nov; 14(11):3964-72. PubMed ID: 24032374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis.
    Gang DR; Costa MA; Fujita M; Dinkova-Kostova AT; Wang HB; Burlat V; Martin W; Sarkanen S; Davin LB; Lewis NG
    Chem Biol; 1999 Mar; 6(3):143-51. PubMed ID: 10074466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymerization of monolignols by redox shuttle-mediated enzymatic oxidation: a new model in lignin biosynthesis I.
    Onnerud H; Zhang L; Gellerstedt G; Henriksson G
    Plant Cell; 2002 Aug; 14(8):1953-62. PubMed ID: 12172033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radical coupling reactions in lignin synthesis: a density functional theory study.
    Sangha AK; Parks JM; Standaert RF; Ziebell A; Davis M; Smith JC
    J Phys Chem B; 2012 Apr; 116(16):4760-8. PubMed ID: 22475051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pH on the Dehydrogenative Polymerization of Monolignols by Laccases from
    Kishimoto T; Hiyama A; Toda H; Urabe D
    ACS Omega; 2022 Mar; 7(11):9846-9852. PubMed ID: 35350311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro analysis of the monolignol coupling mechanism using dehydrogenative polymerization in the presence of peroxidases and controlled feeding ratios of coniferyl and sinapyl alcohol.
    Moon SJ; Kwon M; Choi D; Won K; Kim YH; Choi IG; Choi JW
    Phytochemistry; 2012 Oct; 82():15-21. PubMed ID: 22884779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligninase-mediated phenoxy radical formation and polymerization unaffected by cellobiose:quinone oxidoreductase.
    Odier E; Mozuch MD; Kalyanaraman B; Kirk TK
    Biochimie; 1988 Jun; 70(6):847-52. PubMed ID: 2844307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flash vacuum pyrolysis of methoxy-substituted lignin model compounds.
    Britt PF; Buchanan AC; Cooney MJ; Martineau DR
    J Org Chem; 2000 Mar; 65(5):1376-89. PubMed ID: 10814099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant cell walls are enfeebled when attempting to preserve native lignin configuration with poly-p-hydroxycinnamaldehydes: evolutionary implications.
    Jourdes M; Cardenas CL; Laskar DD; Moinuddin SG; Davin LB; Lewis NG
    Phytochemistry; 2007 Jul; 68(14):1932-56. PubMed ID: 17559892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignin biosynthesis: old roads revisited and new roads explored.
    Dixon RA; Barros J
    Open Biol; 2019 Dec; 9(12):190215. PubMed ID: 31795915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation and polymerization of monolignols by Abortiporus biennis, and induction of its degradation with a reducing agent.
    Hong CY; Park SY; Kim SH; Lee SY; Choi WS; Choi IG
    J Microbiol; 2016 Oct; 54(10):675-85. PubMed ID: 27687230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel and efficient polymerization of lignosulfonates by horseradish peroxidase/H(2)O(2) incubation.
    Zhou H; Yang D; Qiu X; Wu X; Li Y
    Appl Microbiol Biotechnol; 2013 Dec; 97(24):10309-20. PubMed ID: 24196582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.