These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 31417758)
1. The application of metal-organic frameworks in electrode materials for lithium-ion and lithium-sulfur batteries. Zhu JP; Wang XH; Zuo XX R Soc Open Sci; 2019 Jul; 6(7):190634. PubMed ID: 31417758 [TBL] [Abstract][Full Text] [Related]
2. Metal-organic framework based electrode materials for lithium-ion batteries: a review. Mehek R; Iqbal N; Noor T; Amjad MZB; Ali G; Vignarooban K; Khan MA RSC Adv; 2021 Sep; 11(47):29247-29266. PubMed ID: 35479575 [TBL] [Abstract][Full Text] [Related]
3. MOF-Derived Metal Oxide Composites for Advanced Electrochemical Energy Storage. Li Y; Xu Y; Yang W; Shen W; Xue H; Pang H Small; 2018 Jun; 14(25):e1704435. PubMed ID: 29750438 [TBL] [Abstract][Full Text] [Related]
4. A Triptycene-Based Layered/Flower-Like 2D Conductive Metal-Organic Framework with 3D Extension as an Electrode for Efficient Li Storage. Liu X; Yu M; Liu J; Wu S; Gong J Small; 2024 Feb; 20(8):e2306159. PubMed ID: 37840442 [TBL] [Abstract][Full Text] [Related]
5. Advances of Electroactive Metal-Organic Frameworks. Cong C; Ma H Small; 2023 Apr; 19(15):e2207547. PubMed ID: 36631286 [TBL] [Abstract][Full Text] [Related]
6. Recent Progress of Advanced Conductive Metal-Organic Frameworks: Precise Synthesis, Electrochemical Energy Storage Applications, and Future Challenges. Xu G; Zhu C; Gao G Small; 2022 Nov; 18(44):e2203140. PubMed ID: 36050887 [TBL] [Abstract][Full Text] [Related]
7. Hollow Functional Materials Derived from Metal-Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications. Cai ZX; Wang ZL; Kim J; Yamauchi Y Adv Mater; 2019 Mar; 31(11):e1804903. PubMed ID: 30637804 [TBL] [Abstract][Full Text] [Related]
8. Metal-Organic Frameworks Functionalized Separators for Lithium-Sulfur Batteries. Chong YL; Zhao DD; Wang B; Feng L; Li SJ; Shao LX; Tong X; Du X; Cheng H; Zhuang JL Chem Rec; 2022 Oct; 22(10):e202200142. PubMed ID: 35833508 [TBL] [Abstract][Full Text] [Related]
9. Metal-organic frameworks enable broad strategies for lithium-sulfur batteries. Zhou C; Li Z; Xu X; Mai L Natl Sci Rev; 2021 Dec; 8(12):nwab055. PubMed ID: 34987837 [TBL] [Abstract][Full Text] [Related]
10. Advances in nanoporous materials for next-generation battery applications. Sheng L; He X; Xu H Nanoscale; 2024 Jul; 16(28):13373-13385. PubMed ID: 38958068 [TBL] [Abstract][Full Text] [Related]
11. Covalent Organic Frameworks: Their Composites and Derivatives for Rechargeable Metal-Ion Batteries. Sun B; Sun Z; Yang Y; Huang XL; Jun SC; Zhao C; Xue J; Liu S; Liu HK; Dou SX ACS Nano; 2024 Jan; 18(1):28-66. PubMed ID: 38117556 [TBL] [Abstract][Full Text] [Related]
12. Lithiated Defect Sites in Zr Metal-Organic Framework for Enhanced Sulfur Utilization in Li-S Batteries. Baumann AE; Burns DA; Díaz JC; Thoi VS ACS Appl Mater Interfaces; 2019 Jan; 11(2):2159-2167. PubMed ID: 30576597 [TBL] [Abstract][Full Text] [Related]
13. Rational Design of MOF-Based Materials for Next-Generation Rechargeable Batteries. Ye Z; Jiang Y; Li L; Wu F; Chen R Nanomicro Lett; 2021 Oct; 13(1):203. PubMed ID: 34611765 [TBL] [Abstract][Full Text] [Related]
14. Applications of Metal-Organic-Framework-Derived Carbon Materials. Yang W; Li X; Li Y; Zhu R; Pang H Adv Mater; 2019 Feb; 31(6):e1804740. PubMed ID: 30548705 [TBL] [Abstract][Full Text] [Related]
15. Flexible supercapacitor electrodes using metal-organic frameworks. Cherusseri J; Pandey D; Sambath Kumar K; Thomas J; Zhai L Nanoscale; 2020 Sep; 12(34):17649-17662. PubMed ID: 32820760 [TBL] [Abstract][Full Text] [Related]
16. Harnessing the unique properties of 2D materials for advanced lithium-sulfur batteries. Li B; Xu H; Ma Y; Yang S Nanoscale Horiz; 2019 Jan; 4(1):77-98. PubMed ID: 32254146 [TBL] [Abstract][Full Text] [Related]
17. Metal-organic framework (MOF) composites as promising materials for energy storage applications. Peng Y; Xu J; Xu J; Ma J; Bai Y; Cao S; Zhang S; Pang H Adv Colloid Interface Sci; 2022 Sep; 307():102732. PubMed ID: 35870249 [TBL] [Abstract][Full Text] [Related]
18. Aluminum and lithium sulfur batteries: a review of recent progress and future directions. Akgenc B; Sarikurt S; Yagmurcukardes M; Ersan F J Phys Condens Matter; 2021 May; 33(25):. PubMed ID: 33882469 [TBL] [Abstract][Full Text] [Related]
19. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries. Wang DY; Guo W; Fu Y Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341 [TBL] [Abstract][Full Text] [Related]
20. Crystal Engineering of Naphthalenediimide-Based Metal-Organic Frameworks: Structure-Dependent Lithium Storage. Tian B; Ning GH; Gao Q; Tan LM; Tang W; Chen Z; Su C; Loh KP ACS Appl Mater Interfaces; 2016 Nov; 8(45):31067-31075. PubMed ID: 27786456 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]