BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31417999)

  • 1. A portable dual-mode sensor based on a TiO
    Dai Z; Yang L; Li Y; Zhao C; Guo J; Gao Z; Song YY
    Chem Commun (Camb); 2019 Aug; 55(71):10571-10574. PubMed ID: 31417999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target-Driven Nanozyme Growth in TiO
    Dai Z; Guo J; Xu J; Liu C; Gao Z; Song YY
    Anal Chem; 2020 Jul; 92(14):10033-10041. PubMed ID: 32603589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanoparticles-immobilized, hierarchically ordered, porous TiO2 nanotubes for biosensing of glutathione.
    Mers SS; Kumar ET; Ganesh V
    Int J Nanomedicine; 2015; 10 Suppl 1(Suppl 1):171-82. PubMed ID: 26491318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive and bidirectional detection of urine telomerase based on the four detection-color states of difunctional gold nanoparticle probe.
    Duan R; Wang B; Zhang T; Zhang Z; Xu S; Chen Z; Lou X; Xia F
    Anal Chem; 2014 Oct; 86(19):9781-5. PubMed ID: 25165863
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strand displacement amplification-coupled dynamic light scattering method to detect urinary telomerase for non-invasive detection of bladder cancer.
    Wang J; Zhang J; Li T; Shen R; Li G; Ling L
    Biosens Bioelectron; 2019 Apr; 131():143-148. PubMed ID: 30826649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of T4 polynucleotide kinase activity with immobilization of TiO2 nanotubes and amplification of Au nanoparticles.
    Wang G; He X; Xu G; Chen L; Zhu Y; Zhang X; Wang L
    Biosens Bioelectron; 2013 May; 43():125-30. PubMed ID: 23291616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoelectrochemical aptasensor for the sensitive and selective detection of kanamycin based on Au nanoparticle functionalized self-doped TiO2 nanotube arrays.
    Xin Y; Li Z; Zhang Z
    Chem Commun (Camb); 2015 Nov; 51(85):15498-501. PubMed ID: 26382019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using carbon nanotubes-gold nanocomposites to quench energy from pinnate titanium dioxide nanorods array for signal-on photoelectrochemical aptasensing.
    Deng W; Shen L; Wang X; Yang C; Yu J; Yan M; Song X
    Biosens Bioelectron; 2016 Aug; 82():132-9. PubMed ID: 27088368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nickel hydroxide nanoparticle activated semi-metallic TiO(2) nanotube arrays for non-enzymatic glucose sensing.
    Gao ZD; Guo J; Shrestha NK; Hahn R; Song YY; Schmuki P
    Chemistry; 2013 Nov; 19(46):15530-4. PubMed ID: 24115116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive ratiometric fluorescent paper sensor for the urine assay of cancer.
    Ma Y; Mao G; Zhong Y; Wu G; Wu W; Zhan Y; He Z; Huang W
    Talanta; 2019 Mar; 194():199-204. PubMed ID: 30609522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three dimensional design of large-scale TiO(2) nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection.
    Tan EZ; Yin PG; You TT; Wang H; Guo L
    ACS Appl Mater Interfaces; 2012 Jul; 4(7):3432-7. PubMed ID: 22708788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple, fast, label-free colorimetric method for detection of telomerase activity in urine by using hemin-graphene conjugates.
    Xu X; Wei M; Liu Y; Liu X; Wei W; Zhang Y; Liu S
    Biosens Bioelectron; 2017 Jan; 87():600-606. PubMed ID: 27619525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of Highly Uniform Gold Nanoparticles-Titanium Dioxide Nanotube Arrays for H
    Puttharugsa C; Aeimbhu A
    Anal Sci; 2018; 34(3):311-316. PubMed ID: 29526898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of gold nanoclusters: a fluorescent marker for water-soluble TiO2 nanotubes.
    Ratanatawanate C; Yu J; Zhou C; Zheng J; Balkus KJ
    Nanotechnology; 2011 Feb; 22(6):065601. PubMed ID: 21212487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Highly Sensitive Catalytic Hairpin Assembly-Based Dynamic Light-Scattering Biosensors for Telomerase Detection in Bladder Cancer Diagnosis.
    Zou L; Li X; Zhang J; Ling L
    Anal Chem; 2020 Sep; 92(18):12656-12662. PubMed ID: 32814426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urine telomerase and bladder cancer detection.
    Liu BC
    JAMA; 2006 Mar; 295(9):998; author reply 999. PubMed ID: 16507796
    [No Abstract]   [Full Text] [Related]  

  • 17. Urine telomerase and bladder cancer detection.
    Weikert S; Christoph F; Miller K
    JAMA; 2006 Mar; 295(9):998-9; author reply 999. PubMed ID: 16507795
    [No Abstract]   [Full Text] [Related]  

  • 18. Electrochemical sensor for detection of hydrazine based on Au@Pd core-shell nanoparticles supported on amino-functionalized TiO2 nanotubes.
    Chen X; Liu W; Tang L; Wang J; Pan H; Du M
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():304-10. PubMed ID: 24268262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly sensitive and facile graphene oxide-based nucleic acid probe: Label-free detection of telomerase activity in cancer patient's urine using AIEgens.
    Ou X; Hong F; Zhang Z; Cheng Y; Zhao Z; Gao P; Lou X; Xia F; Wang S
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):417-421. PubMed ID: 27184557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic Enhancement Coupling with Defect-Engineered TiO
    Shu J; Qiu Z; Lv S; Zhang K; Tang D
    Anal Chem; 2018 Feb; 90(4):2425-2429. PubMed ID: 29397702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.