These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 31418225)

  • 41. [Response of intra-annual stem radial growth to drought events: A case study of
    Gao JN; Yang B; Qin C
    Ying Yong Sheng Tai Xue Bao; 2021 Oct; 32(10):3505-3511. PubMed ID: 34676711
    [TBL] [Abstract][Full Text] [Related]  

  • 42. What prevails in climatic response of Pinus sylvestris in-between its range limits in mountains: slope aspect or elevation?
    Zhirnova DF; Belokopytova LV; Barabantsova AE; Babushkina EA; Vaganov EA
    Int J Biometeorol; 2020 Mar; 64(3):333-344. PubMed ID: 31691013
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Radial growth of two dominant montane conifer tree species in response to climate change in North-Central China.
    Jiang Y; Zhang W; Wang M; Kang M; Dong M
    PLoS One; 2014; 9(11):e112537. PubMed ID: 25393738
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Tree-ring growth responses of Mongolian oak (Quercus mongolica) to climate change in southern northeast: a case study in Qianshan Mountains].
    Teng L; Xing-Yuan H; Zhen-Ju C
    Ying Yong Sheng Tai Xue Bao; 2014 Jul; 25(7):1841-8. PubMed ID: 25345030
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Measuring canopy loss and climatic thresholds from an extreme drought along a fivefold precipitation gradient across Texas.
    Schwantes AM; Swenson JJ; González-Roglich M; Johnson DM; Domec JC; Jackson RB
    Glob Chang Biol; 2017 Dec; 23(12):5120-5135. PubMed ID: 28649768
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Disentangling the relative role of climate change on tree growth in an extreme Mediterranean environment.
    Madrigal-González J; Andivia E; Zavala MA; Stoffel M; Calatayud J; Sánchez-Salguero R; Ballesteros-Cánovas J
    Sci Total Environ; 2018 Nov; 642():619-628. PubMed ID: 29909329
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Changes in soil carbon, nitrogen, and phosphorus in
    Nie K; Xu M; Zhang J
    PeerJ; 2023; 11():e15198. PubMed ID: 37016678
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Soil heterotrophic respiration and its sensitivity to soil temperature and moisture in Liquidambar formosana and Pinus massoniana forests in hilly areas of southeast Hubei Province, China].
    Wang CH; Chen FQ; Wang Y; Li JQ
    Ying Yong Sheng Tai Xue Bao; 2011 Mar; 22(3):600-6. PubMed ID: 21657013
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Composition and structure of Pinus koraiensis mixed forest respond to spatial climatic changes.
    Zhang J; Zhou Y; Zhou G; Xiao C
    PLoS One; 2014; 9(5):e97192. PubMed ID: 24810605
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ecological and methodological drivers of non-stationarity in tree growth response to climate.
    Tumajer J; Begović K; Čada V; Jenicek M; Lange J; Mašek J; Kaczka RJ; Rydval M; Svoboda M; Vlček L; Treml V
    Glob Chang Biol; 2023 Jan; 29(2):462-476. PubMed ID: 36200330
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microtopography mediates the climate-growth relationship and growth resilience to drought of
    Zhao H; Wu J; Wang A; Guan D; Liu Y
    Front Plant Sci; 2022; 13():1060011. PubMed ID: 36483965
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Forest type and height are important in shaping the altitudinal change of radial growth response to climate change.
    Liang P; Wang X; Sun H; Fan Y; Wu Y; Lin X; Chang J
    Sci Rep; 2019 Feb; 9(1):1336. PubMed ID: 30718624
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Disparate effects of global-change drivers on mountain conifer forests: warming-induced growth enhancement in young trees vs. CO2 fertilization in old trees from wet sites.
    Camarero JJ; Gazol A; Galván JD; Sangüesa-Barreda G; Gutiérrez E
    Glob Chang Biol; 2015 Feb; 21(2):738-49. PubMed ID: 25362899
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Relationship of forest biomass carbon with biophysical parameters in north Kashmir region of Himalayas.
    Wani AA; Bhat AF; Gatoo AA; Zahoor S; Mehraj B; Mir NA; Wani N; Qasba SS; Islam MAU; Masoodi TH
    Environ Monit Assess; 2019 Aug; 191(9):541. PubMed ID: 31385054
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Reconstructing mean temperature of April-July in 1809-2018 based on tree-ring of
    Xu JR; Wang H; Zhao MS; Shi SY; Zhang YP; Shi JF
    Ying Yong Sheng Tai Xue Bao; 2022 Sep; 33(9):2347-2355. PubMed ID: 36131649
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Responses of Pinus sylvestris var. mongolica radial growth to climate warming in Great Xing' an Mountins: a case study in Mangui].
    Zhang XL; He XY; Chen ZJ; Cui MX; Li N
    Ying Yong Sheng Tai Xue Bao; 2011 Dec; 22(12):3101-8. PubMed ID: 22384574
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Predicting the potential distribution of
    Wang Y; Zhao Y; Miao G; Zhou X; Yu C; Cao Y
    Front Plant Sci; 2024; 15():1362020. PubMed ID: 38855470
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Buffered climate change effects in a Mediterranean pine species: range limit implications from a tree-ring study.
    Linares JC; Tíscar PA
    Oecologia; 2011 Nov; 167(3):847-59. PubMed ID: 21562865
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Sexual differences in climatic response of dioecious Populus davidiana tree].
    Gao LS; Zhao XH; Wang XM; Zhang CY
    Ying Yong Sheng Tai Xue Bao; 2014 Jul; 25(7):1863-9. PubMed ID: 25345033
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Radial growth responses of four coniferous species to climate change in the Potatso National Park, China].
    Zhang JM; Fan ZX; Fu PL; Shankar P; Tang H
    Ying Yong Sheng Tai Xue Bao; 2021 Oct; 32(10):3548-3556. PubMed ID: 34676716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.