These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31418687)

  • 21. Rapid Decline of Ceftazidime Resistance in Antibiotic-Free and Sublethal Environments Is Contingent on Genetic Background.
    Hernando-Amado S; Laborda P; Valverde JR; Martínez JL
    Mol Biol Evol; 2022 Mar; 39(3):. PubMed ID: 35291010
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid Evolution of Reduced Susceptibility against a Balanced Dual-Targeting Antibiotic through Stepping-Stone Mutations.
    Szili P; Draskovits G; Révész T; Bogár F; Balogh D; Martinek T; Daruka L; Spohn R; Vásárhelyi BM; Czikkely M; Kintses B; Grézal G; Ferenc G; Pál C; Nyerges Á
    Antimicrob Agents Chemother; 2019 Sep; 63(9):. PubMed ID: 31235632
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Analysis of Drug Resistance Using Experimental Evolution].
    Furusawa C
    Yakugaku Zasshi; 2017; 137(4):373-376. PubMed ID: 28381708
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance.
    Chevereau G; Dravecká M; Batur T; Guvenek A; Ayhan DH; Toprak E; Bollenbach T
    PLoS Biol; 2015; 13(11):e1002299. PubMed ID: 26581035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Associations among Antibiotic and Phage Resistance Phenotypes in Natural and Clinical
    Allen RC; Pfrunder-Cardozo KR; Meinel D; Egli A; Hall AR
    mBio; 2017 Oct; 8(5):. PubMed ID: 29089428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations.
    Fridman O; Goldberg A; Ronin I; Shoresh N; Balaban NQ
    Nature; 2014 Sep; 513(7518):418-21. PubMed ID: 25043002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Historical contingency in the evolution of antibiotic resistance after decades of relaxed selection.
    Card KJ; LaBar T; Gomez JB; Lenski RE
    PLoS Biol; 2019 Oct; 17(10):e3000397. PubMed ID: 31644535
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The genomic basis of adaptation to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa.
    Qi Q; Toll-Riera M; Heilbron K; Preston GM; MacLean RC
    Proc Biol Sci; 2016 Jan; 283(1822):. PubMed ID: 26763710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fitness Tradeoffs of Antibiotic Resistance in Extraintestinal Pathogenic Escherichia coli.
    Basra P; Alsaadi A; Bernal-Astrain G; O'Sullivan ML; Hazlett B; Clarke LM; Schoenrock A; Pitre S; Wong A
    Genome Biol Evol; 2018 Feb; 10(2):667-679. PubMed ID: 29432584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of the fitness impacts on Escherichia coli of acquisition of antibiotic resistance genes encoded by different types of genetic element.
    Enne VI; Delsol AA; Davis GR; Hayward SL; Roe JM; Bennett PM
    J Antimicrob Chemother; 2005 Sep; 56(3):544-51. PubMed ID: 16040624
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pervasive sign epistasis between conjugative plasmids and drug-resistance chromosomal mutations.
    Silva RF; Mendonça SC; Carvalho LM; Reis AM; Gordo I; Trindade S; Dionisio F
    PLoS Genet; 2011 Jul; 7(7):e1002181. PubMed ID: 21829372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolutionary reversals of antibiotic resistance in experimental populations of Pseudomonas aeruginosa.
    Gifford DR; MacLean RC
    Evolution; 2013 Oct; 67(10):2973-81. PubMed ID: 24094347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Idiosyncratic variation in the fitness costs of tetracycline-resistance mutations in Escherichia coli.
    Card KJ; Jordan JA; Lenski RE
    Evolution; 2021 May; 75(5):1230-1238. PubMed ID: 33634468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The evolutionary history of amino acid variations mediating increased resistance of S. aureus identifies reversion mutations in metabolic regulators.
    Champion MD; Gray V; Eberhard C; Kumar S
    PLoS One; 2013; 8(2):e56466. PubMed ID: 23424663
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reversing Antibiotic Resistance Caused by Mobile Resistance Genes of High Fitness Cost.
    Wu J; Dong X; Zhang L; Lin Y; Yang K
    mSphere; 2021 Jun; 6(3):e0035621. PubMed ID: 34160235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phenotypic tolerance: antibiotic enrichment of noninherited resistance in bacterial populations.
    Wiuff C; Zappala RM; Regoes RR; Garner KN; Baquero F; Levin BR
    Antimicrob Agents Chemother; 2005 Apr; 49(4):1483-94. PubMed ID: 15793130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amelioration of the Fitness Costs of Antibiotic Resistance Due To Reduced Outer Membrane Permeability by Upregulation of Alternative Porins.
    Knopp M; Andersson DI
    Mol Biol Evol; 2015 Dec; 32(12):3252-63. PubMed ID: 26358402
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lytic phages obscure the cost of antibiotic resistance in Escherichia coli.
    Tazzyman SJ; Hall AR
    ISME J; 2015 Mar; 9(4):809-20. PubMed ID: 25268496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Persistence of resistance plasmids carried by beta-hemolytic Escherichia coli when maintained in a continuous-flow fermentation system without antimicrobial selection pressure.
    Poole TL; Brichta-Harhay DM; Callaway TR; Beier RC; Bischoff KM; Loneragan GH; Anderson RC; Nisbet DJ
    Foodborne Pathog Dis; 2011 Apr; 8(4):535-40. PubMed ID: 21453118
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gene Amplification Uncovers Large Previously Unrecognized Cryptic Antibiotic Resistance Potential in E. coli.
    Suarez SA; Martiny AC
    Microbiol Spectr; 2021 Dec; 9(3):e0028921. PubMed ID: 34756069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.