BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 31418782)

  • 1. Lotus japonicus Triterpenoid Profile and Characterization of the CYP716A51 and LjCYP93E1 Genes Involved in Their Biosynthesis In Planta.
    Suzuki H; Fukushima EO; Shimizu Y; Seki H; Fujisawa Y; Ishimoto M; Osakabe K; Osakabe Y; Muranaka T
    Plant Cell Physiol; 2019 Nov; 60(11):2496-2509. PubMed ID: 31418782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Class I and II NADPH-cytochrome P450 reductases exhibit different roles in triterpenoid biosynthesis in
    Istiandari P; Yasumoto S; Seki H; Fukushima EO; Muranaka T
    Front Plant Sci; 2023; 14():1214602. PubMed ID: 37621889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Characterization of CYP716 Family P450 Enzymes in Triterpenoid Biosynthesis in Tomato.
    Yasumoto S; Seki H; Shimizu Y; Fukushima EO; Muranaka T
    Front Plant Sci; 2017; 8():21. PubMed ID: 28194155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis.
    Fukushima EO; Seki H; Ohyama K; Ono E; Umemoto N; Mizutani M; Saito K; Muranaka T
    Plant Cell Physiol; 2011 Dec; 52(12):2050-61. PubMed ID: 22039103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular characterization of the pentacyclic triterpenoid biosynthetic pathway in Catharanthus roseus.
    Huang L; Li J; Ye H; Li C; Wang H; Liu B; Zhang Y
    Planta; 2012 Nov; 236(5):1571-81. PubMed ID: 22837051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatorial biosynthesis of legume natural and rare triterpenoids in engineered yeast.
    Fukushima EO; Seki H; Sawai S; Suzuki M; Ohyama K; Saito K; Muranaka T
    Plant Cell Physiol; 2013 May; 54(5):740-9. PubMed ID: 23378447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A metabolic gene cluster in Lotus japonicus discloses novel enzyme functions and products in triterpene biosynthesis.
    Krokida A; Delis C; Geisler K; Garagounis C; Tsikou D; Peña-Rodríguez LM; Katsarou D; Field B; Osbourn AE; Papadopoulou KK
    New Phytol; 2013 Nov; 200(3):675-690. PubMed ID: 23909862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochrome P450 Monooxygenase CYP716A141 is a Unique β-Amyrin C-16β Oxidase Involved in Triterpenoid Saponin Biosynthesis in Platycodon grandiflorus.
    Tamura K; Teranishi Y; Ueda S; Suzuki H; Kawano N; Yoshimatsu K; Saito K; Kawahara N; Muranaka T; Seki H
    Plant Cell Physiol; 2017 May; 58(5):874-884. PubMed ID: 28371833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Multifunctional C-23 Oxidase, CYP714E19, is Involved in Asiaticoside Biosynthesis.
    Kim OT; Um Y; Jin ML; Kim JU; Hegebarth D; Busta L; Racovita RC; Jetter R
    Plant Cell Physiol; 2018 Jun; 59(6):1200-1213. PubMed ID: 29579306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus.
    Iturbe-Ormaetxe I; Haralampidis K; Papadopoulou K; Osbourn AE
    Plant Mol Biol; 2003 Mar; 51(5):731-43. PubMed ID: 12683345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CYP716A179 functions as a triterpene C-28 oxidase in tissue-cultured stolons of Glycyrrhiza uralensis.
    Tamura K; Seki H; Suzuki H; Kojoma M; Saito K; Muranaka T
    Plant Cell Rep; 2017 Mar; 36(3):437-445. PubMed ID: 28008473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two CYP716A subfamily cytochrome P450 monooxygenases of sweet basil play similar but nonredundant roles in ursane- and oleanane-type pentacyclic triterpene biosynthesis.
    Misra RC; Sharma S; Sandeep ; Garg A; Chanotiya CS; Ghosh S
    New Phytol; 2017 Apr; 214(2):706-720. PubMed ID: 28967669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Basic Helix-Loop-Helix Transcription Factor GubHLH3 Positively Regulates Soyasaponin Biosynthetic Genes in Glycyrrhiza uralensis.
    Tamura K; Yoshida K; Hiraoka Y; Sakaguchi D; Chikugo A; Mochida K; Kojoma M; Mitsuda N; Saito K; Muranaka T; Seki H
    Plant Cell Physiol; 2018 Apr; 59(4):778-791. PubMed ID: 29648666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering the unicellular alga Phaeodactylum tricornutum for high-value plant triterpenoid production.
    D'Adamo S; Schiano di Visconte G; Lowe G; Szaub-Newton J; Beacham T; Landels A; Allen MJ; Spicer A; Matthijs M
    Plant Biotechnol J; 2019 Jan; 17(1):75-87. PubMed ID: 29754445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of CYP93E proteins for improved microbial synthesis of plant triterpenoids.
    Moses T; Thevelein JM; Goossens A; Pollier J
    Phytochemistry; 2014 Dec; 108():47-56. PubMed ID: 25453910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic stimulation-elicited transcriptional responses and biosynthesis of acylated triterpenoids precursors in the medicinal plant Helicteres angustifolia.
    Huang Y; An W; Yang Z; Xie C; Liu S; Zhan T; Pan H; Zheng X
    BMC Plant Biol; 2022 Feb; 22(1):86. PubMed ID: 35216551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical identification of 18-hydroxycarlactonoic acid as an LjMAX1 product and in planta conversion of its methyl ester to canonical and non-canonical strigolactones in Lotus japonicus.
    Mori N; Sado A; Xie X; Yoneyama K; Asami K; Seto Y; Nomura T; Yamaguchi S; Yoneyama K; Akiyama K
    Phytochemistry; 2020 Jun; 174():112349. PubMed ID: 32213359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids.
    Andre CM; Legay S; Deleruelle A; Nieuwenhuizen N; Punter M; Brendolise C; Cooney JM; Lateur M; Hausman JF; Larondelle Y; Laing WA
    New Phytol; 2016 Sep; 211(4):1279-94. PubMed ID: 27214242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning and Characterization of Oxidosqualene Cyclases Involved in Taraxasterol, Taraxerol and Bauerenol Triterpene Biosynthesis in Taraxacum coreanum.
    Han JY; Jo HJ; Kwon EK; Choi YE
    Plant Cell Physiol; 2019 Jul; 60(7):1595-1603. PubMed ID: 31020326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genistein-Specific G6DT Gene for the Inducible Production of Wighteone in Lotus japonicus.
    Liu J; Jiang W; Xia Y; Wang X; Shen G; Pang Y
    Plant Cell Physiol; 2018 Jan; 59(1):128-141. PubMed ID: 29140457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.