BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 31418782)

  • 41. Triterpenoid gene expression and phytochemical content in Iranian licorice under salinity stress.
    Shirazi Z; Aalami A; Tohidfar M; Sohani MM
    Protoplasma; 2019 May; 256(3):827-837. PubMed ID: 30623261
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cloning and expression of BpMYC4 and BpbHLH9 genes and the role of BpbHLH9 in triterpenoid synthesis in birch.
    Yin J; Li X; Zhan Y; Li Y; Qu Z; Sun L; Wang S; Yang J; Xiao J
    BMC Plant Biol; 2017 Nov; 17(1):214. PubMed ID: 29162040
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biochemical and Structural Studies of LjSK1, a
    Solovou TGA; Stravodimos G; Papadopoulos GE; Skamnaki VT; Papadopoulou K; Leonidas DD
    J Agric Food Chem; 2024 Feb; 72(7):3763-3772. PubMed ID: 38330914
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two distinct EIN2 genes cooperatively regulate ethylene signaling in Lotus japonicus.
    Miyata K; Kawaguchi M; Nakagawa T
    Plant Cell Physiol; 2013 Sep; 54(9):1469-77. PubMed ID: 23825220
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CYP72A67 Catalyzes a Key Oxidative Step in Medicago truncatula Hemolytic Saponin Biosynthesis.
    Biazzi E; Carelli M; Tava A; Abbruscato P; Losini I; Avato P; Scotti C; Calderini O
    Mol Plant; 2015 Oct; 8(10):1493-506. PubMed ID: 26079384
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Expression of the CLE-RS3 gene suppresses root nodulation in Lotus japonicus.
    Nishida H; Handa Y; Tanaka S; Suzaki T; Kawaguchi M
    J Plant Res; 2016 Sep; 129(5):909-919. PubMed ID: 27294965
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gibberellin controls the nodulation signaling pathway in Lotus japonicus.
    Maekawa T; Maekawa-Yoshikawa M; Takeda N; Imaizumi-Anraku H; Murooka Y; Hayashi M
    Plant J; 2009 Apr; 58(2):183-94. PubMed ID: 19121107
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis.
    Miettinen K; Pollier J; Buyst D; Arendt P; Csuk R; Sommerwerk S; Moses T; Mertens J; Sonawane PD; Pauwels L; Aharoni A; Martins J; Nelson DR; Goossens A
    Nat Commun; 2017 Feb; 8():14153. PubMed ID: 28165039
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distribution and expression characteristics of triterpenoids and OSC genes in white birch (Betula platyphylla suk.).
    Yin J; Ren CL; Zhan YG; Li CX; Xiao JL; Qiu W; Li XY; Peng HM
    Mol Biol Rep; 2012 Mar; 39(3):2321-8. PubMed ID: 21647548
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of promoter activity of the early nodulin Enod40 in Lotus japonicus.
    Grønlund M; Roussis A; Flemetakis E; Quaedvlieg NE; Schlaman HR; Umehara Y; Katinakis P; Stougaard J; Spaink HP
    Mol Plant Microbe Interact; 2005 May; 18(5):414-27. PubMed ID: 15915640
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A genome-wide compilation of the two-component systems in Lotus japonicus.
    Ishida K; Niwa Y; Yamashino T; Mizuno T
    DNA Res; 2009 Aug; 16(4):237-47. PubMed ID: 19675111
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus Ecotypes Gifu B-129 and Miyakojima MG-20: transcriptomic profiling and physiological characterization.
    Babuin MF; Campestre MP; Rocco R; Bordenave CD; Escaray FJ; Antonelli C; Calzadilla P; Gárriz A; Serna E; Carrasco P; Ruiz OA; Menendez AB
    PLoS One; 2014; 9(5):e97106. PubMed ID: 24835559
    [TBL] [Abstract][Full Text] [Related]  

  • 53. De novo characterization of Panax japonicus C. A. Mey transcriptome and genes related to triterpenoid saponin biosynthesis.
    Zhang S; Wu Y; Jin J; Hu B; Zeng W; Zhu W; Zheng Y; Chen P
    Biochem Biophys Res Commun; 2015 Oct; 466(3):450-5. PubMed ID: 26365354
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Intronless β-amyrin Synthase Gene is More Efficient in Oleanolic Acid Accumulation than its Paralog in Gentiana straminea.
    Liu Y; Zhao Z; Xue Z; Wang L; Cai Y; Wang P; Wei T; Gong J; Liu Z; Li J; Li S; Xiang F
    Sci Rep; 2016 Sep; 6():33364. PubMed ID: 27624821
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mutation of MYB36 affects isoflavonoid metabolism, growth, and stress responses in Lotus japonicus.
    Monje-Rueda MD; Pal'ove-Balang P; Trush K; Márquez AJ; Betti M; García-Calderón M
    Physiol Plant; 2023; 175(6):e14084. PubMed ID: 38148200
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Triterpenoid saponins from Medicago hispida.
    Mahato SB
    Phytochemistry; 1991; 30(10):3389-93. PubMed ID: 1367788
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vestitol as a chemical barrier against intrusion of parasitic plant Striga hermonthica into Lotus japonicus roots.
    Ueda H; Sugimoto Y
    Biosci Biotechnol Biochem; 2010; 74(8):1662-7. PubMed ID: 20699571
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cloning and characterization of oxidosqualene cyclases from Kalanchoe daigremontiana: enzymes catalyzing up to 10 rearrangement steps yielding friedelin and other triterpenoids.
    Wang Z; Yeats T; Han H; Jetter R
    J Biol Chem; 2010 Sep; 285(39):29703-12. PubMed ID: 20610397
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient Inactivation of Symbiotic Nitrogen Fixation Related Genes in Lotus japonicus Using CRISPR-Cas9.
    Wang L; Wang L; Tan Q; Fan Q; Zhu H; Hong Z; Zhang Z; Duanmu D
    Front Plant Sci; 2016; 7():1333. PubMed ID: 27630657
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Triterpenoid profiling and functional characterization of the initial genes involved in isoprenoid biosynthesis in neem (Azadirachta indica).
    Pandreka A; Dandekar DS; Haldar S; Uttara V; Vijayshree SG; Mulani FA; Aarthy T; Thulasiram HV
    BMC Plant Biol; 2015 Sep; 15():214. PubMed ID: 26335498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.