BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31419125)

  • 1. Arsenic Oxidation by Flavin-Derived Reactive Species under Oxic and Anoxic Conditions: Oxidant Formation and pH Dependence.
    Pi K; Markelova E; Zhang P; Van Cappellen P
    Environ Sci Technol; 2019 Sep; 53(18):10897-10905. PubMed ID: 31419125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction.
    Hug SJ; Leupin O
    Environ Sci Technol; 2003 Jun; 37(12):2734-42. PubMed ID: 12854713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH Dependence of Arsenic Oxidation by Rice-Husk-Derived Biochar: Roles of Redox-Active Moieties.
    Zhong D; Jiang Y; Zhao Z; Wang L; Chen J; Ren S; Liu Z; Zhang Y; Tsang DCW; Crittenden JC
    Environ Sci Technol; 2019 Aug; 53(15):9034-9044. PubMed ID: 31264414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of Sb(III) oxidation by pyrite-induced hydroxyl radicals and hydrogen peroxide.
    Kong L; Hu X; He M
    Environ Sci Technol; 2015 Mar; 49(6):3499-505. PubMed ID: 25714842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of Fe(II) by Flavins under Anoxic Conditions.
    Zhang P; Van Cappellen P; Pi K; Yuan S
    Environ Sci Technol; 2020 Sep; 54(18):11622-11630. PubMed ID: 32812763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms for hydroxyl radical production and arsenic removal in sulfur-vacancy greigite (Fe
    Liu W; Liu J; Zhou P; Dahlgren RA; Wang X
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):688-695. PubMed ID: 34416458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH dependence of Fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water.
    Katsoyiannis IA; Ruettimann T; Hug SJ
    Environ Sci Technol; 2008 Oct; 42(19):7424-30. PubMed ID: 18939581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A New Mechanism in Electrochemical Process for Arsenic Oxidation: Production of H2O2 from Anodic O2 Reduction on the Cathode under Automatically Developed Alkaline Conditions.
    Qian A; Yuan S; Zhang P; Tong M
    Environ Sci Technol; 2015 May; 49(9):5689-96. PubMed ID: 25853500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Citrate-enhanced release of arsenic during pyrite oxidation at circumneutral conditions.
    Zhang P; Yao W; Yuan S
    Water Res; 2017 Feb; 109():245-252. PubMed ID: 27912099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for the generation of reactive oxygen species from hydroquinone and benzoquinone: Roles in arsenite oxidation.
    Qin W; Wang Y; Fang G; Wu T; Liu C; Zhou D
    Chemosphere; 2016 May; 150():71-78. PubMed ID: 26891359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic(III) and iron(II) co-oxidation by oxygen and hydrogen peroxide: divergent reactions in the presence of organic ligands.
    Wang Z; Bush RT; Liu J
    Chemosphere; 2013 Nov; 93(9):1936-41. PubMed ID: 23880239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidizing Impact Induced by Mackinawite (FeS) Nanoparticles at Oxic Conditions due to Production of Hydroxyl Radicals.
    Cheng D; Yuan S; Liao P; Zhang P
    Environ Sci Technol; 2016 Nov; 50(21):11646-11653. PubMed ID: 27700060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid As(III) oxidation mediated by activated carbons: Reactive species vs. direct oxidation.
    Zhu C; Xue C; Huang M; Zhu F; Fang G; Wang D; Liu S; Chen N; Wu S; Zhou D
    Sci Total Environ; 2022 May; 822():153536. PubMed ID: 35104530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic redox changes by microbially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone.
    Jiang J; Bauer I; Paul A; Kappler A
    Environ Sci Technol; 2009 May; 43(10):3639-45. PubMed ID: 19544866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O(2) via Fe(2+)-mediated reactions.
    Ona-Nguema G; Morin G; Wang Y; Foster AL; Juillot F; Calas G; Brown GE
    Environ Sci Technol; 2010 Jul; 44(14):5416-22. PubMed ID: 20666402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic oxidation of dissolved As(III) and arsenopyrite in the presence of oxygen: Formation and function of reactive oxygen species.
    Hong J; Liu L; Ning Z; Liu C; Qiu G
    Water Res; 2021 Sep; 202():117416. PubMed ID: 34284121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron-mediated oxidation of antimony(III) by oxygen and hydrogen peroxide compared to arsenic(III) oxidation.
    Leuz AK; Hug SJ; Wehrli B; Johnson CA
    Environ Sci Technol; 2006 Apr; 40(8):2565-71. PubMed ID: 16683593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalyzed oxidation of arsenic(III) by hydrogen peroxide on the surface of ferrihydrite: an in situ ATR FTIR study.
    Voegelin A; Hug SJ
    Environ Sci Technol; 2003 Mar; 37(5):972-8. PubMed ID: 12666928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic insights into Sb(III) and Fe(II) co-oxidation by oxygen and hydrogen peroxide: Dominant reactive oxygen species and roles of organic ligands.
    Wang Y; Kong L; He M; Lin C; Ouyang W; Liu X; Peng X
    Water Res; 2023 Aug; 242():120296. PubMed ID: 37413752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. As(V) and As(III) reactions on pristine pyrite and on surface-oxidized pyrite.
    Sun F; Dempsey BA; Osseo-Asare KA
    J Colloid Interface Sci; 2012 Dec; 388(1):170-5. PubMed ID: 23000211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.