BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

808 related articles for article (PubMed ID: 31419713)

  • 1. Ecological drivers of mercury concentrations in fish species in subsistence harvests from Kotzebue Sound, Alaska.
    Cyr AP; López JA; Wooller MJ; Whiting A; Gerlach R; O'Hara T
    Environ Res; 2019 Oct; 177():108622. PubMed ID: 31419713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The relationships between mercury and selenium in plankton and fish from a tropical food web.
    do A Kehrig H; Seixas TG; Palermo EA; Baêta AP; Castelo-Branco CW; Malm O; Moreira I
    Environ Sci Pollut Res Int; 2009 Jan; 16(1):10-24. PubMed ID: 18751748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury in fishes of Alaska, with emphasis on subsistence species.
    Jewett SC; Duffy LK
    Sci Total Environ; 2007 Nov; 387(1-3):3-27. PubMed ID: 17825359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylmercury levels and bioaccumulation in the aquatic food web of a highly mercury-contaminated reservoir.
    Carrasco L; Benejam L; Benito J; Bayona JM; Díez S
    Environ Int; 2011 Oct; 37(7):1213-8. PubMed ID: 21658770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury biomagnification in the aquaculture pond ecosystem in the Pearl River Delta.
    Cheng Z; Liang P; Shao DD; Wu SC; Nie XP; Chen KC; Li KB; Wong MH
    Arch Environ Contam Toxicol; 2011 Oct; 61(3):491-9. PubMed ID: 21290120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioaccumulation characteristics of mercury in fish in the Three Gorges Reservoir, China.
    Xu Q; Zhao L; Wang Y; Xie Q; Yin D; Feng X; Wang D
    Environ Pollut; 2018 Dec; 243(Pt A):115-126. PubMed ID: 30172117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Non-native Fish on Lacustrine Food Web Structure and Mercury Biomagnification along a Dissolved Organic Carbon Gradient.
    Barst BD; Hudelson K; Lescord GL; Santa-Rios A; Basu N; Crémazy A; Drevnick PE
    Environ Toxicol Chem; 2020 Nov; 39(11):2196-2207. PubMed ID: 32729960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioaccumulation and trophic transfer of mercury in a food web from a large, shallow, hypereutrophic lake (Lake Taihu) in China.
    Wang S; Li B; Zhang M; Xing D; Jia Y; Wei C
    Environ Sci Pollut Res Int; 2011 Aug; 19(7):2820-31. PubMed ID: 22351254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flood-pulse and trophic position modulate mercury concentrations in fishes from an Amazon floodplain lake.
    de Castro Paiva T; Dary EP; Pestana IA; Amadio SA; Malm O; Kasper D
    Environ Res; 2022 Dec; 215(Pt 2):114307. PubMed ID: 36115421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increase in mercury and methylmercury levels with depth in a fish assemblage.
    Romero-Romero S; García-Ordiales E; Roqueñí N; Acuña JL
    Chemosphere; 2022 Apr; 292():133445. PubMed ID: 34968522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury bioaccumulation in stream fish from an agriculturally-dominated watershed.
    Donadt C; Cooke CA; Graydon JA; Poesch MS
    Chemosphere; 2021 Jan; 262():128059. PubMed ID: 33182110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury and methyl mercury in fishes from Bacajá River (Brazilian Amazon): evidence for bioaccumulation and biomagnification.
    Souza-Araujo J; Giarrizzo T; Lima MO; Souza MB
    J Fish Biol; 2016 Jul; 89(1):249-63. PubMed ID: 27241551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the influence of migration barriers and feeding ecology on total mercury concentrations in Dolly Varden (Salvelinus malma) from a glaciated and non-glaciated stream.
    Cyr A; Sergeant CJ; Lopez JA; O'Hara T
    Sci Total Environ; 2017 Feb; 580():710-718. PubMed ID: 27979620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal patterns of mercury concentrations in freshwater fish across the Western United States and Canada.
    Eagles-Smith CA; Ackerman JT; Willacker JJ; Tate MT; Lutz MA; Fleck JA; Stewart AR; Wiener JG; Evers DC; Lepak JM; Davis JA; Pritz CF
    Sci Total Environ; 2016 Oct; 568():1171-1184. PubMed ID: 27102274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Total mercury, methylmercury, and selenium in aquatic products from coastal cities of China: Distribution characteristics and risk assessment.
    Zhang H; Guo C; Feng H; Shen Y; Wang Y; Zeng T; Song S
    Sci Total Environ; 2020 Oct; 739():140034. PubMed ID: 32758950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomagnification and trophic transfer of total mercury and methylmercury in a sub-tropical montane forest food web, southwest China.
    Li C; Xu Z; Luo K; Chen Z; Xu X; Xu C; Qiu G
    Chemosphere; 2021 Aug; 277():130371. PubMed ID: 34384195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential bioaccumulation of mercury by zooplankton taxa in a mercury-contaminated reservoir Guizhou China.
    Long SX; Hamilton PB; Yang Y; Wang S; Huang WD; Chen C; Tao R
    Environ Pollut; 2018 Aug; 239():147-160. PubMed ID: 29653305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drivers of variability in mercury and methylmercury bioaccumulation and biomagnification in temperate freshwater lakes.
    Gentès S; Löhrer B; Legeay A; Mazel AF; Anschutz P; Charbonnier C; Tessier E; Maury-Brachet R
    Chemosphere; 2021 Mar; 267():128890. PubMed ID: 33248739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methylmercury and total mercury in estuarine organisms from Rio de Janeiro, Brazil.
    Kehrig HA; Costa M; Moreira I; Malm O
    Environ Sci Pollut Res Int; 2001; 8(4):275-9. PubMed ID: 11605610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimates, spatial variability, and environmental drivers of mercury biomagnification rates through lake food webs in the Canadian subarctic.
    Moslemi-Aqdam M; Low G; Low M; Laird BD; Branfireun BA; Swanson HK
    Environ Res; 2023 Jan; 217():114835. PubMed ID: 36400218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.