These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 31420049)

  • 1. Application of machine learning techniques for creating urban microbial fingerprints.
    Ryan FJ
    Biol Direct; 2019 Aug; 14(1):13. PubMed ID: 31420049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of city specific important bacterial signature for the MetaSUB CAMDA challenge microbiome data.
    Walker AR; Datta S
    Biol Direct; 2019 Jul; 14(1):11. PubMed ID: 31340852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Massive metagenomic data analysis using abundance-based machine learning.
    Harris ZN; Dhungel E; Mosior M; Ahn TH
    Biol Direct; 2019 Aug; 14(1):12. PubMed ID: 31370905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A machine learning framework to determine geolocations from metagenomic profiling.
    Huang L; Xu C; Yang W; Yu R
    Biol Direct; 2020 Nov; 15(1):27. PubMed ID: 33225966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental metagenome classification for constructing a microbiome fingerprint.
    Kawulok J; Kawulok M; Deorowicz S
    Biol Direct; 2019 Nov; 14(1):20. PubMed ID: 31722729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling city-specific signature and identifying sample origin locations for the data from CAMDA MetaSUB challenge.
    Zhang R; Walker AR; Datta S
    Biol Direct; 2021 Jan; 16(1):1. PubMed ID: 33397406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling bacterial fingerprints of city subways from microbiome 16S gene profiles.
    Walker AR; Grimes TL; Datta S; Datta S
    Biol Direct; 2018 May; 13(1):10. PubMed ID: 29789016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Profiling microbial strains in urban environments using metagenomic sequencing data.
    Zolfo M; Asnicar F; Manghi P; Pasolli E; Tett A; Segata N
    Biol Direct; 2018 May; 13(1):9. PubMed ID: 29743119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supervised Machine Learning Enables Geospatial Microbial Provenance.
    Bhattacharya C; Tierney BT; Ryon KA; Bhattacharyya M; Hastings JJA; Basu S; Bhattacharya B; Bagchi D; Mukherjee S; Wang L; Henaff EM; Mason CE
    Genes (Basel); 2022 Oct; 13(10):. PubMed ID: 36292799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery and description of novel phage genomes from urban microbiomes sampled by the MetaSUB consortium.
    Flores VS; Amgarten DE; Iha BKV; Ryon KA; Danko D; Tierney BT; Mason C; da Silva AM; Setubal JC
    Sci Rep; 2024 Apr; 14(1):7913. PubMed ID: 38575625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Metagenomics and Metadesign of the Subways and Urban Biomes (MetaSUB) International Consortium inaugural meeting report.
    MetaSUB International Consortium
    Microbiome; 2016 Jun; 4(1):24. PubMed ID: 27255532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic evaluation of supervised machine learning for sample origin prediction using metagenomic sequencing data.
    Chen JC; Tyler AD
    Biol Direct; 2020 Dec; 15(1):29. PubMed ID: 33302990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibiotic resistance and metabolic profiles as functional biomarkers that accurately predict the geographic origin of city metagenomics samples.
    Casimiro-Soriguer CS; Loucera C; Perez Florido J; López-López D; Dopazo J
    Biol Direct; 2019 Aug; 14(1):15. PubMed ID: 31429791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling City-Specific Microbial Signatures and Identifying Sample Origins for the Data From CAMDA 2020 Metagenomic Geolocation Challenge.
    Zhang R; Ellis D; Walker AR; Datta S
    Front Genet; 2021; 12():659650. PubMed ID: 34421984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Annotating unknown species of urban microorganisms on a global scale unveils novel functional diversity and local environment association.
    Wu J; Danko D; Afshinnekoo E; Bezdan D; Bhattacharyya M; Castro-Nallar E; Chmielarczyk A; Hazrin-Chong NH; Deng Y; Dias-Neto E; Frolova A; Mason-Buck G; Iraola G; Jang S; Łabaj P; Lee PKH; Nieto-Caballero M; Osuolale OO; Ouzounis CA; Perlin MH; Prithiviraj B; Rascovan N; Różańska A; Schriml LM; Semmler T; Suzuki H; Ugalde JA; Young B; Werner J; Zambrano MM; Zhao Y; Mason C; Shi T;
    Environ Res; 2022 May; 207():112183. PubMed ID: 34637759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MetaBinG2: a fast and accurate metagenomic sequence classification system for samples with many unknown organisms.
    Qiao Y; Jia B; Hu Z; Sun C; Xiang Y; Wei C
    Biol Direct; 2018 Aug; 13(1):15. PubMed ID: 30134953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fingerprinting cities: differentiating subway microbiome functionality.
    Zhu C; Miller M; Lusskin N; Mahlich Y; Wang Y; Zeng Z; Bromberg Y
    Biol Direct; 2019 Oct; 14(1):19. PubMed ID: 31666099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of urban microbiome assemblies with the help of targeted in silico gold standards.
    Gerner SM; Rattei T; Graf AB
    Biol Direct; 2018 Oct; 13(1):22. PubMed ID: 30621760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin Sample Prediction and Spatial Modeling of Antimicrobial Resistance in Metagenomic Sequencing Data.
    Zhelyazkova M; Yordanova R; Mihaylov I; Kirov S; Tsonev S; Danko D; Mason C; Vassilev D
    Front Genet; 2021; 12():642991. PubMed ID: 33763122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Where environmental microbiome meets its host: Subway and passenger microbiome relationships.
    Peimbert M; Alcaraz LD
    Mol Ecol; 2023 May; 32(10):2602-2618. PubMed ID: 35318755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.