BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 31420049)

  • 61. Metagenomics and Single-Cell Omics Data Analysis for Human Microbiome Research.
    Han M; Yang P; Zhou H; Li H; Ning K
    Adv Exp Med Biol; 2016; 939():117-137. PubMed ID: 27807746
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Multimodal deep learning applied to classify healthy and disease states of human microbiome.
    Lee SJ; Rho M
    Sci Rep; 2022 Jan; 12(1):824. PubMed ID: 35039534
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Widespread Antibiotic, Biocide, and Metal Resistance in Microbial Communities Inhabiting a Municipal Waste Environment and Anthropogenically Impacted River.
    Collins-Fairclough AM; Co R; Ellis MC; Hug LA
    mSphere; 2018 Sep; 3(5):. PubMed ID: 30258036
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Locality-Sensitive Hashing-Based k-Mer Clustering for Identification of Differential Microbial Markers Related to Host Phenotype.
    Han W; Tang H; Ye Y
    J Comput Biol; 2022 Jul; 29(7):738-751. PubMed ID: 35584271
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Erratum to: The Metagenomics and Metadesign of the Subways and Urban Biomes (MetaSUB) International Consortium Inaugural Meeting Report.
    MetaSUB International Consortium
    Microbiome; 2016 Aug; 4(1):45. PubMed ID: 27538501
    [No Abstract]   [Full Text] [Related]  

  • 66. Multiblock partial least squares and rank aggregation: Applications to detection of bacteriophages associated with antimicrobial resistance in the presence of potential confounding factors.
    Sarkar S; Anyaso-Samuel S; Qiu P; Datta S
    Stat Med; 2024 Jun; 43(13):2527-2546. PubMed ID: 38618705
    [TBL] [Abstract][Full Text] [Related]  

  • 67. MSPminer: abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic data.
    Plaza Oñate F; Le Chatelier E; Almeida M; Cervino ACL; Gauthier F; Magoulès F; Ehrlich SD; Pichaud M
    Bioinformatics; 2019 May; 35(9):1544-1552. PubMed ID: 30252023
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Genomic and metagenomic insights into the microbial community of a thermal spring.
    Pedron R; Esposito A; Bianconi I; Pasolli E; Tett A; Asnicar F; Cristofolini M; Segata N; Jousson O
    Microbiome; 2019 Jan; 7(1):8. PubMed ID: 30674352
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Co-occurrence patterns of bacteria within microbiome of Moscow subway.
    Klimenko NS; Tyakht AV; Toshchakov SV; Shevchenko MA; Korzhenkov AA; Afshinnekoo E; Mason CE; Alexeev DG
    Comput Struct Biotechnol J; 2020; 18():314-322. PubMed ID: 32071708
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Explaining diversity in metagenomic datasets by phylogenetic-based feature weighting.
    Albanese D; De Filippo C; Cavalieri D; Donati C
    PLoS Comput Biol; 2015 Mar; 11(3):e1004186. PubMed ID: 25815895
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A deep siamese neural network improves metagenome-assembled genomes in microbiome datasets across different environments.
    Pan S; Zhu C; Zhao XM; Coelho LP
    Nat Commun; 2022 Apr; 13(1):2326. PubMed ID: 35484115
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Metagenomic approaches: effective tools for monitoring the structure and functionality of microbiomes in anaerobic digestion systems.
    Carabeo-Pérez A; Guerra-Rivera G; Ramos-Leal M; Jiménez-Hernández J
    Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9379-9390. PubMed ID: 31420693
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Phenotype Prediction from Metagenomic Data Using Clustering and Assembly with Multiple Instance Learning (CAMIL).
    Rahman MA; LaPierre N; Rangwala H
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(3):828-840. PubMed ID: 28981422
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Whole metagenome profiles of particulates collected from the International Space Station.
    Be NA; Avila-Herrera A; Allen JE; Singh N; Checinska Sielaff A; Jaing C; Venkateswaran K
    Microbiome; 2017 Jul; 5(1):81. PubMed ID: 28716113
    [TBL] [Abstract][Full Text] [Related]  

  • 75. HumanMycobiomeScan: a new bioinformatics tool for the characterization of the fungal fraction in metagenomic samples.
    Soverini M; Turroni S; Biagi E; Brigidi P; Candela M; Rampelli S
    BMC Genomics; 2019 Jun; 20(1):496. PubMed ID: 31202277
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces.
    Singh NK; Wood JM; Karouia F; Venkateswaran K
    Microbiome; 2018 Nov; 6(1):204. PubMed ID: 30424821
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Developing a New Phylogeny-Driven Random Forest Model for Functional Metagenomics.
    Wassan JT; Wang H; Zheng H
    IEEE Trans Nanobioscience; 2023 Oct; 22(4):763-770. PubMed ID: 37279136
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparison of dimensional reduction methods for detecting and visualizing novel patterns in human and marine microbiome.
    Jiang X; Hu X; Xu W; He T; Park EK
    IEEE Trans Nanobioscience; 2013 Sep; 12(3):199-205. PubMed ID: 23694698
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Practical considerations for sampling and data analysis in contemporary metagenomics-based environmental studies.
    Staley C; Sadowsky MJ
    J Microbiol Methods; 2018 Nov; 154():14-18. PubMed ID: 30287354
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Assessment of k-mer spectrum applicability for metagenomic dissimilarity analysis.
    Dubinkina VB; Ischenko DS; Ulyantsev VI; Tyakht AV; Alexeev DG
    BMC Bioinformatics; 2016 Jan; 17():38. PubMed ID: 26774270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.