BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31420547)

  • 1. Generation of amine dehydrogenases with increased catalytic performance and substrate scope from ε-deaminating L-Lysine dehydrogenase.
    Tseliou V; Knaus T; Masman MF; Corrado ML; Mutti FG
    Nat Commun; 2019 Aug; 10(1):3717. PubMed ID: 31420547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amine dehydrogenases: efficient biocatalysts for the reductive amination of carbonyl compounds.
    Knaus T; Böhmer W; Mutti FG
    Green Chem; 2017 Jan; 19(2):453-463. PubMed ID: 28663713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Insight into the Catalytic Promiscuity of Amine Dehydrogenases: Asymmetric Synthesis of Secondary and Primary Amines.
    Tseliou V; Masman MF; Böhmer W; Knaus T; Mutti FG
    Chembiochem; 2019 Mar; 20(6):800-812. PubMed ID: 30489013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of Oxidoreductases with Dual Alcohol Dehydrogenase and Amine Dehydrogenase Activity.
    Tseliou V; Schilder D; Masman MF; Knaus T; Mutti FG
    Chemistry; 2021 Feb; 27(10):3315-3325. PubMed ID: 33073866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NAD(P)H-Dependent Dehydrogenases for the Asymmetric Reductive Amination of Ketones: Structure, Mechanism, Evolution and Application.
    Sharma M; Mangas-Sanchez J; Turner NJ; Grogan G
    Adv Synth Catal; 2017 Jun; 359(12):2011-2025. PubMed ID: 30008635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Asymmetric Reductive Amination of Alkyl (Hetero)Aryl Ketones by an Engineered Amine Dehydrogenase.
    Kong W; Liu Y; Huang C; Zhou L; Gao J; Turner NJ; Jiang Y
    Angew Chem Int Ed Engl; 2022 May; 61(21):e202202264. PubMed ID: 35285128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic Resolution of Racemic Primary Amines Using
    Tseliou V; Knaus T; Vilím J; Masman MF; Mutti FG
    ChemCatChem; 2020 Apr; 12(8):2184-2188. PubMed ID: 32802214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [NAD(P)H-dependent oxidoreductases for synthesis of chiral amines by asymmetric reductive amination of ketones].
    Cheng F; Li Q; Li H; Xue Y
    Sheng Wu Gong Cheng Xue Bao; 2020 Sep; 36(9):1794-1816. PubMed ID: 33164457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel chimeric amine dehydrogenase shows altered substrate specificity compared to its parent enzymes.
    Bommarius BR; Schürmann M; Bommarius AS
    Chem Commun (Camb); 2014 Dec; 50(95):14953-5. PubMed ID: 25347124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and Mutation of the Native Amine Dehydrogenase MATOUAmDH2.
    Bennett M; Ducrot L; Vergne-Vaxelaire C; Grogan G
    Chembiochem; 2022 May; 23(10):e202200136. PubMed ID: 35349204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocatalytic reductive aminations with NAD(P)H-dependent enzymes: enzyme discovery, engineering and synthetic applications.
    Yuan B; Yang D; Qu G; Turner NJ; Sun Z
    Chem Soc Rev; 2024 Jan; 53(1):227-262. PubMed ID: 38059509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductive amination of ketones catalyzed by whole cell biocatalysts containing imine reductases (IREDs).
    Maugeri Z; Rother D
    J Biotechnol; 2017 Sep; 258():167-170. PubMed ID: 28545904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo plug-and-play: a modular multi-enzyme single-cell catalyst for the asymmetric amination of ketoacids and ketones.
    Farnberger JE; Lorenz E; Richter N; Wendisch VF; Kroutil W
    Microb Cell Fact; 2017 Jul; 16(1):132. PubMed ID: 28754115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of Chiral Amino Alcohols via an Engineered Amine Dehydrogenase in
    Tong F; Qin Z; Wang H; Jiang Y; Li J; Ming H; Qu G; Xiao Y; Sun Z
    Front Bioeng Biotechnol; 2021; 9():778584. PubMed ID: 35071200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric Biocatalytic Amination of Ketones at the Expense of NH3 and Molecular Hydrogen.
    Holzer AK; Hiebler K; Mutti FG; Simon RC; Lauterbach L; Lenz O; Kroutil W
    Org Lett; 2015 May; 17(10):2431-3. PubMed ID: 25946312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioselective synthesis of amines via reductive amination with a dehydrogenase mutant from Exigobacterium sibiricum: Substrate scope, co-solvent tolerance and biocatalyst immobilization.
    Löwe J; Ingram AA; Gröger H
    Bioorg Med Chem; 2018 Apr; 26(7):1387-1392. PubMed ID: 29548785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing cofactor recycling in the bioconversion of racemic alcohols to chiral amines with alcohol dehydrogenase and amine dehydrogenase by coupling cells and cell-free system.
    Liu J; Li Z
    Biotechnol Bioeng; 2019 Mar; 116(3):536-542. PubMed ID: 30536736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis.
    Kohls H; Steffen-Munsberg F; Höhne M
    Curr Opin Chem Biol; 2014 Apr; 19():180-92. PubMed ID: 24721252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iridium-Catalyzed Direct Reductive Amination of Ketones and Secondary Amines: Breaking the Aliphatic Wall.
    Jouffroy M; Nguyen TM; Cordier M; Blot M; Roisnel T; Gramage-Doria R
    Chemistry; 2022 Jun; 28(36):e202201078. PubMed ID: 35474525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High coenzyme affinity chimeric amine dehydrogenase based on domain engineering.
    Li J; Mu X; Wu T; Xu Y
    Bioresour Bioprocess; 2022 Mar; 9(1):33. PubMed ID: 38647888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.