BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31420768)

  • 1. Inverse finite element characterization of the human thigh soft tissue in the seated position.
    Chen S; Scott J; Bush TR; Roccabianca S
    Biomech Model Mechanobiol; 2020 Feb; 19(1):305-316. PubMed ID: 31420768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of body position on the material properties of soft tissue in the human thigh.
    Scott J; Chen S; Roccabianca S; Bush TR
    J Mech Behav Biomed Mater; 2020 Oct; 110():103964. PubMed ID: 32957255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation.
    Oddes Z; Solav D
    J Mech Behav Biomed Mater; 2023 Apr; 140():105708. PubMed ID: 36801779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element models of the thigh-buttock complex for assessing static sitting discomfort and pressure sore risk: a literature review.
    Savonnet L; Wang X; Duprey S
    Comput Methods Biomech Biomed Engin; 2018 Mar; 21(4):379-388. PubMed ID: 29722570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical properties of the pelvic floor muscles of continent and incontinent women using an inverse finite element analysis.
    Silva MET; Brandão S; Parente MPL; Mascarenhas T; Natal Jorge RM
    Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):842-852. PubMed ID: 28303730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sub-domain inverse finite element characterization of hyperelastic membranes including soft tissues.
    Seshaiyer P; Humphrey JD
    J Biomech Eng; 2003 Jun; 125(3):363-71. PubMed ID: 12929241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperelastic compressive mechanical properties of the subcalcaneal soft tissue: An inverse finite element analysis.
    Isvilanonda V; Iaquinto JM; Pai S; Mackenzie-Helnwein P; Ledoux WR
    J Biomech; 2016 May; 49(7):1186-1191. PubMed ID: 27040391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and Validation of a High Anatomical Fidelity FE Model for the Buttock and Thigh of a Seated Individual.
    Al-Dirini RM; Reed MP; Hu J; Thewlis D
    Ann Biomed Eng; 2016 Sep; 44(9):2805-16. PubMed ID: 26857008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of constitutive materials of bi-layer soft tissues from multimodal indentations.
    Fougeron N; Oddes Z; Ashkenazi A; Solav D
    J Mech Behav Biomed Mater; 2024 Jul; 155():106572. PubMed ID: 38754153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of nonlinear hyperelastic coefficients for foot tissues using a magnetic resonance imaging deformation experiment.
    Petre M; Erdemir A; Panoskaltsis VP; Spirka TA; Cavanagh PR
    J Biomech Eng; 2013 Jun; 135(6):61001-12. PubMed ID: 23699713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An anatomically based finite element model of the lower limbs in the seated posture.
    Cox SL; Mithraratne K; Smith NP
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6327-30. PubMed ID: 18003468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is a simplified Finite Element model of the gluteus region able to capture the mechanical response of the internal soft tissues under compression?
    Macron A; Pillet H; Doridam J; Rivals I; Sadeghinia MJ; Verney A; Rohan PY
    Clin Biomech (Bristol, Avon); 2020 Jan; 71():92-100. PubMed ID: 31707190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo mechanical response of thigh soft tissues under compression: A two-layer model allows an improved representation of the local tissue kinematics.
    Segain A; Sciume G; Pillet H; Rohan PY
    J Mech Behav Biomed Mater; 2024 Aug; 156():106584. PubMed ID: 38810544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining Freehand Ultrasound-Based Indentation and Inverse Finite Element Modeling for the Identification of Hyperelastic Material Properties of Thigh Soft Tissues.
    Fougeron N; Rohan PY; Haering D; Rose JL; Bonnet X; Pillet H
    J Biomech Eng; 2020 Sep; 142(9):. PubMed ID: 32086518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element modeling and parameter identification of the seated human body exposed to vertical vibration.
    Gao K; Li C; Xiao Y; Zhang Z
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1789-1803. PubMed ID: 34268622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of hyperelastic properties of passive thigh muscle under compression with an inverse method from a displacement field measurement.
    Affagard JS; Feissel P; Bensamoun SF
    J Biomech; 2015 Nov; 48(15):4081-4086. PubMed ID: 26602374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Personalized modeling for real-time pressure ulcer prevention in sitting posture.
    Luboz V; Bailet M; Boichon Grivot C; Rochette M; Diot B; Bucki M; Payan Y
    J Tissue Viability; 2018 Feb; 27(1):54-58. PubMed ID: 28637592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishing the biomechanical properties of the pelvic soft tissues through an inverse finite element analysis using magnetic resonance imaging.
    Silva ME; Brandão S; Parente MP; Mascarenhas T; Natal Jorge RM
    Proc Inst Mech Eng H; 2016 Apr; 230(4):298-309. PubMed ID: 26867781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization method for the determination of Mooney-Rivlin material coefficients of the human breasts in-vivo using static and dynamic finite element models.
    Sun Y; Chen L; Yick KL; Yu W; Lau N; Jiao W
    J Mech Behav Biomed Mater; 2019 Feb; 90():615-625. PubMed ID: 30500699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.