These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 31421358)

  • 1. Emerging technologies for antibiotic susceptibility testing.
    Behera B; Anil Vishnu GK; Chatterjee S; Sitaramgupta V VSN; Sreekumar N; Nagabhushan A; Rajendran N; Prathik BH; Pandya HJ
    Biosens Bioelectron; 2019 Oct; 142():111552. PubMed ID: 31421358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress in antibiotic susceptibility tests: a comparative review with special emphasis on microfluidic methods.
    Khan ZA; Siddiqui MF; Park S
    Biotechnol Lett; 2019 Feb; 41(2):221-230. PubMed ID: 30542946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Multiplex Fluidic Chip for Rapid Phenotypic Antibiotic Susceptibility Testing.
    Wistrand-Yuen P; Malmberg C; Fatsis-Kavalopoulos N; Lübke M; Tängdén T; Kreuger J
    mBio; 2020 Feb; 11(1):. PubMed ID: 32098819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling Antimicrobial Susceptibility of Bacterial Networks on Micropillar Architectures Using Intrinsic Phase-Shift Spectroscopy.
    Leonard H; Halachmi S; Ben-Dov N; Nativ O; Segal E
    ACS Nano; 2017 Jun; 11(6):6167-6177. PubMed ID: 28485961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single cell antimicrobial susceptibility testing by confined microchannels and electrokinetic loading.
    Lu Y; Gao J; Zhang DD; Gau V; Liao JC; Wong PK
    Anal Chem; 2013 Apr; 85(8):3971-6. PubMed ID: 23445209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerating bacterial growth detection and antimicrobial susceptibility assessment in integrated picoliter droplet platform.
    Kaushik AM; Hsieh K; Chen L; Shin DJ; Liao JC; Wang TH
    Biosens Bioelectron; 2017 Nov; 97():260-266. PubMed ID: 28609716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microplate-based surface area assay for rapid phenotypic antibiotic susceptibility testing.
    Flentie K; Spears BR; Chen F; Purmort NB; DaPonte K; Viveiros E; Phelan N; Krebill C; Flyer AN; Hooper DC; Smalley DL; Ferraro MJ; Vacic A; Stern E
    Sci Rep; 2019 Jan; 9(1):237. PubMed ID: 30659207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical antimicrobial susceptibility testing based on aptamer-functionalized capacitance sensor array for clinical isolates.
    Lee KS; Lee SM; Oh J; Park IH; Song JH; Han M; Yong D; Lim KJ; Shin JS; Yoo KH
    Sci Rep; 2020 Aug; 10(1):13709. PubMed ID: 32792573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoliter-Sized Microchamber/Microarray Microfluidic Platform for Antibiotic Susceptibility Testing.
    Azizi M; Zaferani M; Dogan B; Zhang S; Simpson KW; Abbaspourrad A
    Anal Chem; 2018 Dec; 90(24):14137-14144. PubMed ID: 30474959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct antimicrobial susceptibility testing of bloodstream infection on SlipChip.
    Yi Q; Cai D; Xiao M; Nie M; Cui Q; Cheng J; Li C; Feng J; Urban G; Xu YC; Lan Y; Du W
    Biosens Bioelectron; 2019 Jun; 135():200-207. PubMed ID: 31026774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging Microtechnologies and Automated Systems for Rapid Bacterial Identification and Antibiotic Susceptibility Testing.
    Li Y; Yang X; Zhao W
    SLAS Technol; 2017 Dec; 22(6):585-608. PubMed ID: 28850804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics.
    Cira NJ; Ho JY; Dueck ME; Weibel DB
    Lab Chip; 2012 Mar; 12(6):1052-9. PubMed ID: 22193301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interference Disturbance Analysis Enables Single-Cell Level Growth and Mobility Characterization for Rapid Antimicrobial Susceptibility Testing.
    Volbers D; Stierle VK; Ditzel KJ; Aschauer J; Rädler JO; Opitz M; Paulitschke P
    Nano Lett; 2019 Feb; 19(2):643-651. PubMed ID: 30525694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging Analytical Techniques for Rapid Pathogen Identification and Susceptibility Testing.
    Shin DJ; Andini N; Hsieh K; Yang S; Wang TH
    Annu Rev Anal Chem (Palo Alto Calif); 2019 Jun; 12(1):41-67. PubMed ID: 30939033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic device for antimicrobial susceptibility testing based on a broth dilution method.
    Lee WB; Fu CY; Chang WH; You HL; Wang CH; Lee MS; Lee GB
    Biosens Bioelectron; 2017 Jan; 87():669-678. PubMed ID: 27622941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Thermoplastic Microsystem to Perform Antibiotic Susceptibility Testing by Monitoring Oxygen Consumption.
    Jusková P; Kling A; Schmitt S; Dittrich PS
    Methods Mol Biol; 2024; 2804():179-194. PubMed ID: 38753148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial susceptibility testing of Gram-positive and -negative bacterial isolates directly from spiked blood culture media with Raman spectroscopy.
    Dekter HE; Orelio CC; Morsink MC; Tektas S; Vis B; Te Witt R; van Leeuwen WB
    Eur J Clin Microbiol Infect Dis; 2017 Jan; 36(1):81-89. PubMed ID: 27638006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fast impedance-based antimicrobial susceptibility test.
    Spencer DC; Paton TF; Mulroney KT; Inglis TJJ; Sutton JM; Morgan H
    Nat Commun; 2020 Oct; 11(1):5328. PubMed ID: 33087704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel concentration gradient microfluidic chip for high-throughput antibiotic susceptibility testing of bacteria.
    Sun J; Ren Y; Ji J; Guo Y; Sun X
    Anal Bioanal Chem; 2021 Feb; 413(4):1127-1136. PubMed ID: 33420534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress-induced antibiotic susceptibility testing on a chip.
    Kalashnikov M; Campbell J; Lee JC; Sharon A; Sauer-Budge AF
    J Vis Exp; 2014 Jan; (83):e50828. PubMed ID: 24430495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.