BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31421403)

  • 21. Aloe-emodin inhibits Staphylococcus aureus biofilms and extracellular protein production at the initial adhesion stage of biofilm development.
    Xiang H; Cao F; Ming D; Zheng Y; Dong X; Zhong X; Mu D; Li B; Zhong L; Cao J; Wang L; Ma H; Wang T; Wang D
    Appl Microbiol Biotechnol; 2017 Sep; 101(17):6671-6681. PubMed ID: 28710559
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leonurus cardiaca L. herb--a derived extract and an ursolic acid as the factors affecting the adhesion capacity of Staphylococcus aureus in the context of infective endocarditis.
    Micota B; Sadowska B; Podsędek A; Redzynia M; Różalska B
    Acta Biochim Pol; 2014; 61(2):385-8. PubMed ID: 24918490
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracellular protease in Actinomycetes culture supernatants inhibits and detaches Staphylococcus aureus biofilm formation.
    Park JH; Lee JH; Kim CJ; Lee JC; Cho MH; Lee J
    Biotechnol Lett; 2012 Apr; 34(4):655-61. PubMed ID: 22160331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential binding of biofilm-derived and suspension-grown Staphylococcus aureus to immobilized platelets in shear flow.
    George NP; Ymele-Leki P; Konstantopoulos K; Ross JM
    J Infect Dis; 2009 Mar; 199(5):633-40. PubMed ID: 19210161
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Erianin against
    Ouyang P; He X; Yuan ZW; Yin ZQ; Fu H; Lin J; He C; Liang X; Lv C; Shu G; Yuan ZX; Song X; Li L; Yin L
    Toxins (Basel); 2018 Sep; 10(10):. PubMed ID: 30249042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lens-on-surface method for investigating adhesion of Staphylococcus aureus to solid surfaces incubated in blood plasma.
    Elwing H; Askendal A
    J Biomed Mater Res; 1994 Jul; 28(7):775-82. PubMed ID: 8083245
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adhesiveness of opportunistic Staphylococcus aureus to materials used in dental office: In vitro study.
    Merghni A; Bekir K; Kadmi Y; Dallel I; Janel S; Bovio S; Barois N; Lafont F; Mastouri M
    Microb Pathog; 2017 Feb; 103():129-134. PubMed ID: 27993700
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus.
    Stenz L; François P; Fischer A; Huyghe A; Tangomo M; Hernandez D; Cassat J; Linder P; Schrenzel J
    FEMS Microbiol Lett; 2008 Oct; 287(2):149-55. PubMed ID: 18754790
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces.
    Liu J; Li W; Zhu X; Zhao H; Lu Y; Zhang C; Lu Z
    Appl Microbiol Biotechnol; 2019 Jun; 103(11):4565-4574. PubMed ID: 31011774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential kinetics and molecular recognition mechanisms involved in early versus late growth phase Staphylococcus aureus cell binding to platelet layers under physiological shear conditions.
    George NP; Konstantopoulos K; Ross JM
    J Infect Dis; 2007 Aug; 196(4):639-46. PubMed ID: 17624852
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Forces guiding staphylococcal adhesion.
    Herman-Bausier P; Formosa-Dague C; Feuillie C; Valotteau C; Dufrêne YF
    J Struct Biol; 2017 Jan; 197(1):65-69. PubMed ID: 26707623
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biofilm formation in invasive Staphylococcus aureus isolates is associated with the clonal lineage.
    Naicker PR; Karayem K; Hoek KG; Harvey J; Wasserman E
    Microb Pathog; 2016 Jan; 90():41-9. PubMed ID: 26546719
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Herman-Bausier P; Labate C; Towell AM; Derclaye S; Geoghegan JA; Dufrêne YF
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5564-5569. PubMed ID: 29735708
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduced bacterial adhesion to fibrinogen-coated substrates via nitric oxide release.
    Charville GW; Hetrick EM; Geer CB; Schoenfisch MH
    Biomaterials; 2008 Oct; 29(30):4039-44. PubMed ID: 18657857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human methicillin-sensitive Staphylococcus aureus biofilms: potential associations with antibiotic resistance persistence and surface polysaccharide antigens.
    Babra C; Tiwari J; Costantino P; Sunagar R; Isloor S; Hegde N; Mukkur T
    J Basic Microbiol; 2014 Jul; 54(7):721-8. PubMed ID: 23686411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characteristics of new Staphylococcus aureus-RBC adhesion mechanism independent of fibrinogen and IgG under hydrodynamic shear conditions.
    Shin PK; Pawar P; Konstantopoulos K; Ross JM
    Am J Physiol Cell Physiol; 2005 Sep; 289(3):C727-34. PubMed ID: 15888554
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Evaluation of the effect of glucose on Staphylococcus aureus and Escherichia coli biofilm formation on the surface of polypropylene mesh].
    Reśliński A; Dabrowiecki S
    Med Dosw Mikrobiol; 2013; 65(1):19-26. PubMed ID: 24180128
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Antimicrobial and Physical Treatments on Growth of Multispecies Staphylococcal Biofilms.
    Stewart EJ; Payne DE; Ma TM; VanEpps JS; Boles BR; Younger JG; Solomon MJ
    Appl Environ Microbiol; 2017 Jun; 83(12):. PubMed ID: 28411222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tissue Plasminogen Activator Coating on Implant Surfaces Reduces Staphylococcus aureus Biofilm Formation.
    Kwiecinski J; Na M; Jarneborn A; Jacobsson G; Peetermans M; Verhamme P; Jin T
    Appl Environ Microbiol; 2016 Jan; 82(1):394-401. PubMed ID: 26519394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biofilm-forming capacity of Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa from ocular infections.
    Hou W; Sun X; Wang Z; Zhang Y
    Invest Ophthalmol Vis Sci; 2012 Aug; 53(9):5624-31. PubMed ID: 22736609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.