These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 31421452)
1. Preparation of hydroxyapatite nanostructures with different morphologies and adsorption behavior on seven heavy metals ions. Zou X; Zhao Y; Zhang Z J Contam Hydrol; 2019 Oct; 226():103538. PubMed ID: 31421452 [TBL] [Abstract][Full Text] [Related]
2. Self-templated microwave-assisted hydrothermal synthesis of two-dimensional holey hydroxyapatite nanosheets for efficient heavy metal removal. Su Y; Wang J; Li S; Zhu J; Liu W; Zhang Z Environ Sci Pollut Res Int; 2019 Oct; 26(29):30076-30086. PubMed ID: 31418146 [TBL] [Abstract][Full Text] [Related]
3. Strontium-doped hydroxyapatite as adsorbent effectively to remove lead ions from water. Zhu Z; Jiang H; Zhu Y; Zhang L; Tang S; Zhou X; Fan Y Environ Sci Pollut Res Int; 2022 Nov; 29(53):81063-81075. PubMed ID: 35729392 [TBL] [Abstract][Full Text] [Related]
4. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell. Peng SH; Wang R; Yang LZ; He L; He X; Liu X Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165 [TBL] [Abstract][Full Text] [Related]
5. Investigation of Competitive and Noncompetitive Adsorption of Some Heavy Metals Ions on Ucarli O; Yayintas OT; Engin MS; Cay S; Saglikoglu G; Yilmaz S Langmuir; 2020 Jul; 36(28):8265-8271. PubMed ID: 32558581 [TBL] [Abstract][Full Text] [Related]
6. Study on the performance and mechanism of cobaltous ion removal from water by a high-efficiency strontium-doped hydroxyapatite adsorbent. Zhu Z; Liu S; Zhu Y; He H; Zhang J; Mo X; Tang S; Fan Y; Zhang L; Zhou X Environ Sci Pollut Res Int; 2024 Apr; 31(20):30059-30071. PubMed ID: 38594560 [TBL] [Abstract][Full Text] [Related]
7. Removal of cadmium(II) from aqueous solution by hydroxyapatite-encapsulated zinc ferrite (HAP/ZnFe Das KC; Dhar SS Environ Sci Pollut Res Int; 2020 Oct; 27(30):37977-37988. PubMed ID: 32613515 [TBL] [Abstract][Full Text] [Related]
8. Recycling of phosphate tailings for an efficient hydroxyapatite-based adsorbent to immobilize heavy metal cations. Wu S; Liu Y; Shang L; Zhou W; Li Y; Sun J; Li J; Long H; Ning Z; Liu C Environ Sci Pollut Res Int; 2023 Jun; 30(28):72160-72170. PubMed ID: 37166727 [TBL] [Abstract][Full Text] [Related]
9. Preparation of a novel bio-adsorbent of sodium alginate grafted polyacrylamide/graphene oxide hydrogel for the adsorption of heavy metal ion. Jiang H; Yang Y; Lin Z; Zhao B; Wang J; Xie J; Zhang A Sci Total Environ; 2020 Nov; 744():140653. PubMed ID: 32693272 [TBL] [Abstract][Full Text] [Related]
10. Adsorption characteristics of copper, lead, zinc and cadmium ions by tourmaline. Jiang K; Sun TH; Sun LN; Li HB J Environ Sci (China); 2006; 18(6):1221-5. PubMed ID: 17294969 [TBL] [Abstract][Full Text] [Related]
11. Immobilization of 5-aminopyridine-2-tetrazole on cross-linked polystyrene for the preparation of a new adsorbent to remove heavy metal ions from aqueous solution. Zhang Y; Chen Y; Wang C; Wei Y J Hazard Mater; 2014 Jul; 276():129-37. PubMed ID: 24875375 [TBL] [Abstract][Full Text] [Related]
12. Factors influencing the removal of divalent cations by hydroxyapatite. Smiciklas I; Onjia A; Raicević S; Janaćković D; Mitrić M J Hazard Mater; 2008 Apr; 152(2):876-84. PubMed ID: 17764836 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of a Magnetic Carnation-like Hydroxyapatite/Basic Calcium Carbonate Nanocomposite and Its Adsorption Behaviors for Lead Ions in Water. Guo H; Hu S; Wang Z; Li Y; Guo X; He Z; Wang W; Feng J; Yang K; Zheng H Molecules; 2022 Aug; 27(17):. PubMed ID: 36080330 [TBL] [Abstract][Full Text] [Related]
14. Adsorption characteristics of Pb(II), Cd(II) and Cu(II) on carbon nanotube-hydroxyapatite. Li G; Zhang J; Li Y; Liu J; Yan Z Environ Technol; 2021 Apr; 42(10):1560-1581. PubMed ID: 31566478 [TBL] [Abstract][Full Text] [Related]
15. A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study. Abdolali A; Ngo HH; Guo W; Lu S; Chen SS; Nguyen NC; Zhang X; Wang J; Wu Y Sci Total Environ; 2016 Jan; 542(Pt A):603-11. PubMed ID: 26544889 [TBL] [Abstract][Full Text] [Related]
16. Self-purification of marine environments for heavy metals: a study on removal of lead(II) and copper(II) by cuttlebone. Dobaradaran S; Nabipour I; Keshtkar M; Ghasemi FF; Nazarialamdarloo T; Khalifeh F; Poorhosein M; Abtahi M; Saeedi R Water Sci Technol; 2017 Jan; 75(2):474-481. PubMed ID: 28112674 [TBL] [Abstract][Full Text] [Related]
17. Preparation and characterization of nanomuscovite by intercalation method for adsorption of heavy metals from polluted water. Rashed MN; Arifien AE; El-Dowy FA Environ Geochem Health; 2023 Jul; 45(7):5127-5144. PubMed ID: 37074498 [TBL] [Abstract][Full Text] [Related]
18. [Adsorption Behaviors of Lead on Multi-Walled Carbon Nanotube-Hydroxyapatite Composites]. Zhang JL; Li Y Huan Jing Ke Xue; 2015 Jul; 36(7):2554-63. PubMed ID: 26489325 [TBL] [Abstract][Full Text] [Related]
19. Modification of porous starch for the adsorption of heavy metal ions from aqueous solution. Ma X; Liu X; Anderson DP; Chang PR Food Chem; 2015 Aug; 181():133-9. PubMed ID: 25794731 [TBL] [Abstract][Full Text] [Related]
20. Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. Lin K; Pan J; Chen Y; Cheng R; Xu X J Hazard Mater; 2009 Jan; 161(1):231-40. PubMed ID: 18573599 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]