These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31421552)

  • 21. Explosion parameters and combustion kinetics of biomass dust.
    Liu A; Chen J; Huang X; Lin J; Zhang X; Xu W
    Bioresour Technol; 2019 Dec; 294():122168. PubMed ID: 31569047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dust explosion hazard of pulverized fuel carry-over.
    Amyotte PR; Basu A; Khan FI
    J Hazard Mater; 2005 Jun; 122(1-2):23-30. PubMed ID: 15905025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uncertainty quantification in the health consequences of the boiling liquid expanding vapour explosion phenomenon.
    Papazoglou IA; Aneziris ON
    J Hazard Mater; 1999 Jun; 67(3):217-35. PubMed ID: 10370178
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Venting of gas explosion through relief ducts: interaction between internal and external explosions.
    Ferrara G; Willacy SK; Phylaktou HN; Andrews GE; Di Benedetto A; Salzano E; Russo G
    J Hazard Mater; 2008 Jun; 155(1-2):358-68. PubMed ID: 18187258
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental and Numerical Study of Natural Gas Leakage and Explosion Characteristics.
    Cai P; Li M; Liu Z; Li P; Zhao Y; Zhou Y
    ACS Omega; 2022 Jul; 7(29):25278-25290. PubMed ID: 35910168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental study on vented explosion overpressure of methane/air mixtures in manhole.
    Li P; Huang P; Liu Z; Du B; Li M
    J Hazard Mater; 2019 Jul; 374():349-355. PubMed ID: 31026628
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exposure of a liquefied gas container to an external fire.
    Raj PK
    J Hazard Mater; 2005 Jun; 122(1-2):37-49. PubMed ID: 15908108
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overall characterization of cork dust explosion.
    Pilão R; Ramalho E; Pinho C
    J Hazard Mater; 2006 May; 133(1-3):183-95. PubMed ID: 16297545
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Explosion characteristics of synthesised biogas at various temperatures.
    Dupont L; Accorsi A
    J Hazard Mater; 2006 Aug; 136(3):520-5. PubMed ID: 16466853
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cause Analysis of the Large-Scale LPG Explosion Accident Based on Key Investigation Technology: A Case Study.
    Qian X; Zhang R; Zhang Q; Yuan M; Zhao Y
    ACS Omega; 2021 Aug; 6(31):20644-20656. PubMed ID: 34396010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Letter: Laparoscopy explosion hazards with nitrous oxide.
    Robinson JS; Thompson JM; Wood AW
    Br Med J; 1976 May; 1(6020):1277. PubMed ID: 131599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental study on using water mist containing potassium compounds to suppress methane/air explosions.
    Liu Z; Zhong X; Zhang Q; Lu C
    J Hazard Mater; 2020 Jul; 394():122561. PubMed ID: 32248030
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CFD calculations of gas leak dispersion and subsequent gas explosions: validation against ignited impinging hydrogen jet experiments.
    Middha P; Hansen OR; Grune J; Kotchourko A
    J Hazard Mater; 2010 Jul; 179(1-3):84-94. PubMed ID: 20346585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rays as weapons.
    Vogel H
    Eur J Radiol; 2007 Aug; 63(2):167-77. PubMed ID: 17630244
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Petroleum Vapor Intrusion Model Involving Upward Advective Soil Gas Flow Due to Methane Generation.
    Yao Y; Wu Y; Wang Y; Verginelli I; Zeng T; Suuberg EM; Jiang L; Wen Y; Ma J
    Environ Sci Technol; 2015 Oct; 49(19):11577-85. PubMed ID: 26322369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect Analysis of the Venting Direction on Explosion Pressure in LPG Pipelines.
    Bi H; Cao Y; Mao W; Wang K
    ACS Omega; 2024 Apr; 9(13):15709-15717. PubMed ID: 38585099
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparative analysis of liquefied petroleum gas (LPG) and kerosene related burns.
    Ahuja RB; Dash JK; Shrivastava P
    Burns; 2011 Dec; 37(8):1403-10. PubMed ID: 21507577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A model to assess dust explosion occurrence probability.
    Hassan J; Khan F; Amyotte P; Ferdous R
    J Hazard Mater; 2014 Mar; 268():140-9. PubMed ID: 24486616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of domestic air pollution from cooking fuel on respiratory allergies in children in India.
    Kumar R; Nagar JK; Raj N; Kumar P; Kushwah AS; Meena M; Gaur SN
    Asian Pac J Allergy Immunol; 2008 Dec; 26(4):213-22. PubMed ID: 19317340
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Indoor respirable particulate matter concentrations from an open fire, improved cookstove, and LPG/open fire combination in a rural Guatemalan community.
    Albalak R; Bruce N; McCracken JP; Smith KR; De Gallardo T
    Environ Sci Technol; 2001 Jul; 35(13):2650-5. PubMed ID: 11452588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.