BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 31421595)

  • 1. A Neuromorphic Prosthesis to Restore Communication in Neuronal Networks.
    Buccelli S; Bornat Y; Colombi I; Ambroise M; Martines L; Pasquale V; Bisio M; Tessadori J; Nowak P; Grassia F; Averna A; Tedesco M; Bonifazi P; Difato F; Massobrio P; Levi T; Chiappalone M
    iScience; 2019 Sep; 19():402-414. PubMed ID: 31421595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromorphic-Based Neuroprostheses for Brain Rewiring: State-of-the-Art and Perspectives in Neuroengineering.
    Chiappalone M; Cota VR; Carè M; Di Florio M; Beaubois R; Buccelli S; Barban F; Brofiga M; Averna A; Bonacini F; Guggenmos DJ; Bornat Y; Massobrio P; Bonifazi P; Levi T
    Brain Sci; 2022 Nov; 12(11):. PubMed ID: 36421904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging Materials for Neuromorphic Devices and Systems.
    Kim MK; Park Y; Kim IJ; Lee JS
    iScience; 2020 Dec; 23(12):101846. PubMed ID: 33319174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromorphic neural interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems.
    Broccard FD; Joshi S; Wang J; Cauwenberghs G
    J Neural Eng; 2017 Aug; 14(4):041002. PubMed ID: 28573983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data and Power Efficient Intelligence with Neuromorphic Learning Machines.
    Neftci EO
    iScience; 2018 Jul; 5():52-68. PubMed ID: 30240646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal Management in Neuromorphic Materials, Devices, and Networks.
    Torres F; Basaran AC; Schuller IK
    Adv Mater; 2023 Sep; 35(37):e2205098. PubMed ID: 36067752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Bidirectional Brain-Machine Interface Featuring a Neuromorphic Hardware Decoder.
    Boi F; Moraitis T; De Feo V; Diotalevi F; Bartolozzi C; Indiveri G; Vato A
    Front Neurosci; 2016; 10():563. PubMed ID: 28018162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuromorphic hardware databases for exploring structure-function relationships in the brain.
    Breslin C; O'Lenskie A
    Philos Trans R Soc Lond B Biol Sci; 2001 Aug; 356(1412):1249-58. PubMed ID: 11545701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BiœmuS: A new tool for neurological disorders studies through real-time emulation and hybridization using biomimetic Spiking Neural Network.
    Beaubois R; Cheslet J; Duenki T; De Venuto G; Carè M; Khoyratee F; Chiappalone M; Branchereau P; Ikeuchi Y; Levi T
    Nat Commun; 2024 Jun; 15(1):5142. PubMed ID: 38902236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromorphic Context-Dependent Learning Framework With Fault-Tolerant Spike Routing.
    Yang S; Wang J; Deng B; Azghadi MR; Linares-Barranco B
    IEEE Trans Neural Netw Learn Syst; 2022 Dec; 33(12):7126-7140. PubMed ID: 34115596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuromorphic Engineering: From Biological to Spike-Based Hardware Nervous Systems.
    Yang JQ; Wang R; Ren Y; Mao JY; Wang ZP; Zhou Y; Han ST
    Adv Mater; 2020 Dec; 32(52):e2003610. PubMed ID: 33165986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasticity and Adaptation in Neuromorphic Biohybrid Systems.
    George R; Chiappalone M; Giugliano M; Levi T; Vassanelli S; Partzsch J; Mayr C
    iScience; 2020 Oct; 23(10):101589. PubMed ID: 33083749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal Mapping of Spiking Neural Network to Neuromorphic Hardware for Edge-AI.
    Xiao C; Chen J; Wang L
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neuromimetic realization of hippocampal CA1 for theta wave generation.
    Salimi-Nezhad N; Hasanlou M; Amiri M; Keliris GA
    Neural Netw; 2021 Oct; 142():548-563. PubMed ID: 34340189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing.
    Choi S; Yang J; Wang G
    Adv Mater; 2020 Dec; 32(51):e2004659. PubMed ID: 33006204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A System-on-Chip Based Hybrid Neuromorphic Compute Node Architecture for Reproducible Hyper-Real-Time Simulations of Spiking Neural Networks.
    Trensch G; Morrison A
    Front Neuroinform; 2022; 16():884033. PubMed ID: 35846779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial Neuron and Synapse Devices Based on 2D Materials.
    Lee G; Baek JH; Ren F; Pearton SJ; Lee GH; Kim J
    Small; 2021 May; 17(20):e2100640. PubMed ID: 33817985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surrogate gradients for analog neuromorphic computing.
    Cramer B; Billaudelle S; Kanya S; Leibfried A; Grübl A; Karasenko V; Pehle C; Schreiber K; Stradmann Y; Weis J; Schemmel J; Zenke F
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35042792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.