These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 31421600)
1. Numerical simulation of electroosmosis regulated peristaltic transport of Bingham nanofluid. Tanveer A; Khan M; Salahuddin T; Malik MY Comput Methods Programs Biomed; 2019 Oct; 180():105005. PubMed ID: 31421600 [TBL] [Abstract][Full Text] [Related]
2. Numerical simulation for peristalsis of Carreau-Yasuda nanofluid in curved channel with mixed convection and porous space. Tanveer A; Hayat T; Alsaedi A; Ahmad B PLoS One; 2017; 12(2):e0170029. PubMed ID: 28151968 [TBL] [Abstract][Full Text] [Related]
3. Theoretical analysis of non-Newtonian blood flow in a microchannel. Tanveer A; Salahuddin T; Khan M; Malik MY; Alqarni MS Comput Methods Programs Biomed; 2020 Jul; 191():105280. PubMed ID: 32066045 [TBL] [Abstract][Full Text] [Related]
4. Slip effects on mixed convective peristaltic transport of copper-water nanofluid in an inclined channel. Abbasi FM; Hayat T; Ahmad B; Chen GQ PLoS One; 2014; 9(8):e105440. PubMed ID: 25170908 [TBL] [Abstract][Full Text] [Related]
5. Effect of Joule heating and entropy generation on multi-slip condition of peristaltic flow of Casson nanofluid in an asymmetric channel. Kotnurkar A; Kallolikar N J Biol Phys; 2022 Sep; 48(3):273-293. PubMed ID: 35478056 [TBL] [Abstract][Full Text] [Related]
6. Radiative Peristaltic Flow of Jeffrey Nanofluid with Slip Conditions and Joule Heating. Hayat T; Shafique M; Tanveer A; Alsaedi A PLoS One; 2016; 11(2):e0148002. PubMed ID: 26886919 [TBL] [Abstract][Full Text] [Related]
7. Joule heating and zeta potential effects on peristaltic blood flow through porous micro vessels altered by electrohydrodynamic. Ranjit NK; Shit GC; Tripathi D Microvasc Res; 2018 May; 117():74-89. PubMed ID: 29291432 [TBL] [Abstract][Full Text] [Related]
8. MHD peristaltic motion of Johnson-Segalman fluid in an inclined channel subject to radiative flux and convective boundary conditions. Hayat T; Aslam N; Ijaz Khan M; Imran Khan M; Alsaedi A Comput Methods Programs Biomed; 2019 Oct; 180():104999. PubMed ID: 31421603 [TBL] [Abstract][Full Text] [Related]
9. Biological analysis of Jeffrey nanofluid in a curved channel with heat dissipation. Maraj EN; Akbar NS; Nadeem S IEEE Trans Nanobioscience; 2014 Dec; 13(4):431-7. PubMed ID: 25122841 [TBL] [Abstract][Full Text] [Related]
10. Combined effect of couple stresses and heat and mass transfer on peristaltic flow with slip conditions in a tube. Sobh AM Proc Inst Mech Eng H; 2013 Oct; 227(10):1073-82. PubMed ID: 23851658 [TBL] [Abstract][Full Text] [Related]
11. MHD peristaltic flow of nanofluid in a vertical channel with multiple slip features: an application to chyme movement. Vaidya H; Rajashekhar C; Prasad KV; Khan SU; Riaz A; Viharika JU Biomech Model Mechanobiol; 2021 Jun; 20(3):1047-1067. PubMed ID: 33656629 [TBL] [Abstract][Full Text] [Related]
12. Thermal and physical impact of viscoplastic nanoparticles in a complex divergent channel due to peristalsis phenomenon: Heat generation and multiple slip effects. Aich W; Javid K; Tag-ElDin ESM; Ghachem K; Ullah I; Iqbal MA; Khan SU; Kolsi L Heliyon; 2023 Jul; 9(7):e17644. PubMed ID: 37501997 [TBL] [Abstract][Full Text] [Related]
13. Mixed convection peristaltic flow of Eyring-Powell nanofluid in a curved channel with compliant walls. Tanveer A; Hayat T; Alsaadi F; Alsaedi A Comput Biol Med; 2017 Mar; 82():71-79. PubMed ID: 28161594 [TBL] [Abstract][Full Text] [Related]
14. Numerical simulation of heat transfer in blood flow altered by electroosmosis through tapered micro-vessels. Prakash J; Ramesh K; Tripathi D; Kumar R Microvasc Res; 2018 Jul; 118():162-172. PubMed ID: 29596861 [TBL] [Abstract][Full Text] [Related]
15. Nanoparticle aggregation and electro-osmotic propulsion in peristaltic transport of third-grade nanofluids through porous tube. Dolui S; Bhaumik B; De S; Changdar S Comput Biol Med; 2024 Jun; 176():108617. PubMed ID: 38772055 [TBL] [Abstract][Full Text] [Related]
16. Influences of slip and Cu-blood nanofluid in a physiological study of cilia. Sadaf H; Nadeem S Comput Methods Programs Biomed; 2016 Jul; 131():169-80. PubMed ID: 27265057 [TBL] [Abstract][Full Text] [Related]
17. Numerical study for MHD peristaltic flow in a rotating frame. Hayat T; Zahir H; Tanveer A; Alsaedi A Comput Biol Med; 2016 Dec; 79():215-221. PubMed ID: 27810627 [TBL] [Abstract][Full Text] [Related]
18. Mathematica numerical simulation of peristaltic biophysical transport of a fractional viscoelastic fluid through an inclined cylindrical tube. Tripathi D; Anwar Bég O Comput Methods Biomech Biomed Engin; 2015; 18(15):1648-57. PubMed ID: 25059738 [TBL] [Abstract][Full Text] [Related]
19. Mixed convection peristaltic motion of copper-water nanomaterial with velocity slip effects in a curved channel. Hayat T; Farooq S; Alsaedi A Comput Methods Programs Biomed; 2017 Apr; 142():117-128. PubMed ID: 28325440 [TBL] [Abstract][Full Text] [Related]
20. Homogeneous-heterogeneous reactions in peristaltic flow with convective conditions. Hayat T; Tanveer A; Yasmin H; Alsaedi A PLoS One; 2014; 9(12):e113851. PubMed ID: 25460608 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]