BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 31421600)

  • 1. Numerical simulation of electroosmosis regulated peristaltic transport of Bingham nanofluid.
    Tanveer A; Khan M; Salahuddin T; Malik MY
    Comput Methods Programs Biomed; 2019 Oct; 180():105005. PubMed ID: 31421600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation for peristalsis of Carreau-Yasuda nanofluid in curved channel with mixed convection and porous space.
    Tanveer A; Hayat T; Alsaedi A; Ahmad B
    PLoS One; 2017; 12(2):e0170029. PubMed ID: 28151968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical analysis of non-Newtonian blood flow in a microchannel.
    Tanveer A; Salahuddin T; Khan M; Malik MY; Alqarni MS
    Comput Methods Programs Biomed; 2020 Jul; 191():105280. PubMed ID: 32066045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slip effects on mixed convective peristaltic transport of copper-water nanofluid in an inclined channel.
    Abbasi FM; Hayat T; Ahmad B; Chen GQ
    PLoS One; 2014; 9(8):e105440. PubMed ID: 25170908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Joule heating and entropy generation on multi-slip condition of peristaltic flow of Casson nanofluid in an asymmetric channel.
    Kotnurkar A; Kallolikar N
    J Biol Phys; 2022 Sep; 48(3):273-293. PubMed ID: 35478056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiative Peristaltic Flow of Jeffrey Nanofluid with Slip Conditions and Joule Heating.
    Hayat T; Shafique M; Tanveer A; Alsaedi A
    PLoS One; 2016; 11(2):e0148002. PubMed ID: 26886919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joule heating and zeta potential effects on peristaltic blood flow through porous micro vessels altered by electrohydrodynamic.
    Ranjit NK; Shit GC; Tripathi D
    Microvasc Res; 2018 May; 117():74-89. PubMed ID: 29291432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MHD peristaltic motion of Johnson-Segalman fluid in an inclined channel subject to radiative flux and convective boundary conditions.
    Hayat T; Aslam N; Ijaz Khan M; Imran Khan M; Alsaedi A
    Comput Methods Programs Biomed; 2019 Oct; 180():104999. PubMed ID: 31421603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological analysis of Jeffrey nanofluid in a curved channel with heat dissipation.
    Maraj EN; Akbar NS; Nadeem S
    IEEE Trans Nanobioscience; 2014 Dec; 13(4):431-7. PubMed ID: 25122841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined effect of couple stresses and heat and mass transfer on peristaltic flow with slip conditions in a tube.
    Sobh AM
    Proc Inst Mech Eng H; 2013 Oct; 227(10):1073-82. PubMed ID: 23851658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MHD peristaltic flow of nanofluid in a vertical channel with multiple slip features: an application to chyme movement.
    Vaidya H; Rajashekhar C; Prasad KV; Khan SU; Riaz A; Viharika JU
    Biomech Model Mechanobiol; 2021 Jun; 20(3):1047-1067. PubMed ID: 33656629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal and physical impact of viscoplastic nanoparticles in a complex divergent channel due to peristalsis phenomenon: Heat generation and multiple slip effects.
    Aich W; Javid K; Tag-ElDin ESM; Ghachem K; Ullah I; Iqbal MA; Khan SU; Kolsi L
    Heliyon; 2023 Jul; 9(7):e17644. PubMed ID: 37501997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mixed convection peristaltic flow of Eyring-Powell nanofluid in a curved channel with compliant walls.
    Tanveer A; Hayat T; Alsaadi F; Alsaedi A
    Comput Biol Med; 2017 Mar; 82():71-79. PubMed ID: 28161594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of heat transfer in blood flow altered by electroosmosis through tapered micro-vessels.
    Prakash J; Ramesh K; Tripathi D; Kumar R
    Microvasc Res; 2018 Jul; 118():162-172. PubMed ID: 29596861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle aggregation and electro-osmotic propulsion in peristaltic transport of third-grade nanofluids through porous tube.
    Dolui S; Bhaumik B; De S; Changdar S
    Comput Biol Med; 2024 Jun; 176():108617. PubMed ID: 38772055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influences of slip and Cu-blood nanofluid in a physiological study of cilia.
    Sadaf H; Nadeem S
    Comput Methods Programs Biomed; 2016 Jul; 131():169-80. PubMed ID: 27265057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical study for MHD peristaltic flow in a rotating frame.
    Hayat T; Zahir H; Tanveer A; Alsaedi A
    Comput Biol Med; 2016 Dec; 79():215-221. PubMed ID: 27810627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mathematica numerical simulation of peristaltic biophysical transport of a fractional viscoelastic fluid through an inclined cylindrical tube.
    Tripathi D; Anwar Bég O
    Comput Methods Biomech Biomed Engin; 2015; 18(15):1648-57. PubMed ID: 25059738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixed convection peristaltic motion of copper-water nanomaterial with velocity slip effects in a curved channel.
    Hayat T; Farooq S; Alsaedi A
    Comput Methods Programs Biomed; 2017 Apr; 142():117-128. PubMed ID: 28325440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homogeneous-heterogeneous reactions in peristaltic flow with convective conditions.
    Hayat T; Tanveer A; Yasmin H; Alsaedi A
    PLoS One; 2014; 9(12):e113851. PubMed ID: 25460608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.