BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 31422041)

  • 1. Protein expression information of prostate infection based on data mining.
    Abula A; Shao W; Tusong H; Wang F; Yasheng A; Wang Y; Wang Y
    J Infect Public Health; 2020 Oct; 13(10):1533-1536. PubMed ID: 31422041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and analysis of protein-protein interaction networks based on proteomics data of prostate cancer.
    Chen C; Shen H; Zhang LG; Liu J; Cao XG; Yao AL; Kang SS; Gao WX; Han H; Cao FH; Li ZG
    Int J Mol Med; 2016 Jun; 37(6):1576-86. PubMed ID: 27121963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction and analysis of mRNA, miRNA, lncRNA, and TF regulatory networks reveal the key genes associated with prostate cancer.
    Ye Y; Li SL; Wang SY
    PLoS One; 2018; 13(8):e0198055. PubMed ID: 30138363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the Multi-Target Pharmacological Mechanism of
    Song Y; Wang H; Pan Y; Liu T
    Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31600936
    [No Abstract]   [Full Text] [Related]  

  • 5. Integrative analysis of ocular complications in atherosclerosis unveils pathway convergence and crosstalk.
    Gupta A; Mohanty P; Bhatnagar S
    J Recept Signal Transduct Res; 2015 Apr; 35(2):149-64. PubMed ID: 25055025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of key regulators in prostate cancer from gene expression datasets of patients.
    Mangangcha IR; Malik MZ; Küçük Ö; Ali S; Singh RKB
    Sci Rep; 2019 Nov; 9(1):16420. PubMed ID: 31712650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PIGNON: a protein-protein interaction-guided functional enrichment analysis for quantitative proteomics.
    Nadeau R; Byvsheva A; Lavallée-Adam M
    BMC Bioinformatics; 2021 Jun; 22(1):302. PubMed ID: 34088263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide gene expression analysis of a murine model of prostate cancer progression: Deciphering the roles of IL-6 and p38 MAPK as potential therapeutic targets.
    Daouk R; Bahmad HF; Saleh E; Monzer A; Ballout F; Kadara H; Abou-Kheir W
    PLoS One; 2020; 15(8):e0237442. PubMed ID: 32790767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathway crosstalk analysis in prostate cancer based on protein-protein network data.
    Li HY; Jin N; Han YP; Jin XF
    Neoplasma; 2017; 64(1):22-31. PubMed ID: 27881001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. More advantages in detecting bone and soft tissue metastases from prostate cancer using
    Pianou NK; Stavrou PZ; Vlontzou E; Rondogianni P; Exarhos DN; Datseris IE
    Hell J Nucl Med; 2019; 22(1):6-9. PubMed ID: 30843003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathway crosstalk analysis based on protein-protein network analysis in prostate cancer.
    Wang JM; Wu JT; Sun DK; Zhang P; Wang L
    Eur Rev Med Pharmacol Sci; 2012 Sep; 16(9):1235-42. PubMed ID: 23047508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomics analysis of malignant and benign prostate tissue by 2D DIGE/MS reveals new insights into proteins involved in prostate cancer.
    Davalieva K; Kostovska IM; Kiprijanovska S; Markoska K; Kubelka-Sabit K; Filipovski V; Stavridis S; Stankov O; Komina S; Petrusevska G; Polenakovic M
    Prostate; 2015 Oct; 75(14):1586-600. PubMed ID: 26074449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinformatics analysis of differentially expressed proteins in prostate cancer based on proteomics data.
    Chen C; Zhang LG; Liu J; Han H; Chen N; Yao AL; Kang SS; Gao WX; Shen H; Zhang LJ; Li YP; Cao FH; Li ZG
    Onco Targets Ther; 2016; 9():1545-57. PubMed ID: 27051295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Network-based prediction and knowledge mining of disease genes.
    Carson MB; Lu H
    BMC Med Genomics; 2015; 8 Suppl 2(Suppl 2):S9. PubMed ID: 26043920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mining featured biomarkers associated with prostatic carcinoma based on bioinformatics.
    Piao G; Wu J
    Biomarkers; 2013 Nov; 18(7):580-6. PubMed ID: 23957850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico identification of key genes and signaling pathways targeted by a panel of signature microRNAs in prostate cancer.
    Baruah MM; Sharma N
    Med Oncol; 2019 Apr; 36(5):43. PubMed ID: 30937635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of key DNA methylation-driven genes in prostate adenocarcinoma: an integrative analysis of TCGA methylation data.
    Xu N; Wu YP; Ke ZB; Liang YC; Cai H; Su WT; Tao X; Chen SH; Zheng QS; Wei Y; Xue XY
    J Transl Med; 2019 Sep; 17(1):311. PubMed ID: 31533842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of prostate cancer hub genes and therapeutic agents using bioinformatics approach.
    Fang E; Zhang X; Wang Q; Wang D
    Cancer Biomark; 2017 Dec; 20(4):553-561. PubMed ID: 28800317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-based assessment and network analysis of targeting 14-3-3 proteins in prostate cancer.
    Root A; Beizaei A; Ebhardt HA
    Mol Cancer; 2018 Oct; 17(1):156. PubMed ID: 30382885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing protein-protein interaction network of hypertension with blood stasis syndrome via digital gene expression sequencing and database mining.
    Lian YH; Fang MX; Chen LG
    J Integr Med; 2014 Nov; 12(6):476-82. PubMed ID: 25412665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.