These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31422289)

  • 1. Effects of aerial ladder rung spacing on firefighter climbing biomechanics.
    Simeonov P; Hsiao H; Armstrong T; Fu Q; Woolley C; Kau TY
    Appl Ergon; 2020 Jan; 82():102911. PubMed ID: 31422289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selected movement and force pattern differences in rail- and rung-climbing of fire apparatus aerial ladders at 52.5° slope.
    Fu QA; Simeonov P; Hsiao H; Woolley C; Armstrong TJ
    Appl Ergon; 2022 Feb; 99():103639. PubMed ID: 34753097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hand-rung forces after a ladder climbing perturbation.
    Pliner EM; Novak AC; Beschorner KE
    J Biomech; 2020 Jun; 106():109790. PubMed ID: 32517996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of upper body strength, hand placement and foot placement on ladder fall severity.
    Pliner EM; Seo NJ; Ramakrishnan V; Beschorner KE
    Gait Posture; 2019 Feb; 68():23-29. PubMed ID: 30439684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical response to ladder slipping events: Effects of hand placement.
    Schnorenberg AJ; Campbell-Kyureghyan NH; Beschorner KE
    J Biomech; 2015 Nov; 48(14):3810-5. PubMed ID: 26431752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical analysis in ladder climbing: the effect of slant angle and climbing speed.
    Lee YH; Cheng CK; Tsuang YH
    Proc Natl Sci Counc Repub China B; 1994 Oct; 18(4):170-8. PubMed ID: 7701016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The physiological effect of a 'climb assist' device on vertical ladder climbing.
    Barron PJ; Burgess K; Cooper K; Stewart AD
    Ergonomics; 2017 Jul; 60(7):1008-1013. PubMed ID: 27745528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ergonomics assessment of three simulated 120 m ladder ascents: A comparison of novice and experienced climbers.
    Milligan GS; O'Halloran J; Tipton MJ
    Appl Ergon; 2020 May; 85():103043. PubMed ID: 31929026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trunk and lower limb biomechanics during stair climbing in people with and without symptomatic femoroacetabular impingement.
    Hammond CA; Hatfield GL; Gilbart MK; Garland SJ; Hunt MA
    Clin Biomech (Bristol, Avon); 2017 Feb; 42():108-114. PubMed ID: 28135662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stair ascent and descent biomechanical adaptations while using a custom ankle-foot orthosis.
    Aldridge Whitehead JM; Russell Esposito E; Wilken JM
    J Biomech; 2016 Sep; 49(13):2899-2908. PubMed ID: 27451057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of foot placement, hand positioning, age and climbing biodynamics on ladder slip outcomes.
    Pliner EM; Campbell-Kyureghyan NH; Beschorner KE
    Ergonomics; 2014; 57(11):1739-49. PubMed ID: 25116116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Gloves and Pulling Task on Achievable Downward Pull Forces on a Rung.
    Beschorner KE; Slota GP; Pliner EM; Spaho E; Seo NJ
    Hum Factors; 2018 Mar; 60(2):191-200. PubMed ID: 29161154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A role for the lower visual field information in stair climbing.
    Miyasike-daSilva V; Singer JC; McIlroy WE
    Gait Posture; 2019 May; 70():162-167. PubMed ID: 30875603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Movement compensations during a step ascent task are associated with stair climbing performance in people with multiple sclerosis.
    Kline PW; Christiansen CL; Hager ER; Alvarez E; Mañago MM
    Gait Posture; 2021 Jun; 87():27-32. PubMed ID: 33878510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of ladder parameters on asymmetric patterns of force exertion during below-knee amputees climbing ladders.
    Li W; Li S; Fu Y; Chen J
    Int J Occup Saf Ergon; 2017 Mar; 23(1):21-32. PubMed ID: 27231803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait Analysis Reveals that Total Hip Arthroplasty Increases Power Production in the Hip During Level Walking and Stair Climbing.
    Queen RM; Campbell JC; Schmitt D
    Clin Orthop Relat Res; 2019 Aug; 477(8):1839-1847. PubMed ID: 31135537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of light handrail use on the biomechanics of stair negotiation in old age.
    Reeves ND; Spanjaard M; Mohagheghi AA; Baltzopoulos V; Maganaris CN
    Gait Posture; 2008 Aug; 28(2):327-36. PubMed ID: 18337102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climbing parrots achieve pitch stability using forces and free moments produced by axial-appendicular couples.
    Reader LL; Carrier DR; Goller F; Isaacs MR; Moore Crisp A; Barnes CJ; Lee DV
    J Exp Biol; 2022 Jan; 225(1):. PubMed ID: 34748013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing the shoe-rung friction requirements during ladder climbing.
    Martin ER; Pliner EM; Beschorner KE
    J Biomech; 2020 Jan; 99():109507. PubMed ID: 31780121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of pitched and vertical ladder ergometer climbing on cardiorespiratory and psychophysical variables.
    Barron PJ; Burgess K; Cooper K; Stewart AD
    Appl Ergon; 2018 Jan; 66():172-176. PubMed ID: 28958426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.