BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31422316)

  • 1. Modelling of radon hazards in underground mine workings.
    Skubacz K; Wysocka M; Michalik B; Dziurzyński W; Krach A; Krawczyk J; Pałka T
    Sci Total Environ; 2019 Dec; 695():133853. PubMed ID: 31422316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of particle size distribution on dose conversion factors for radon progeny in the underground excavations of hard coal mine.
    Skubacz K; Wojtecki Ł; Urban P
    J Environ Radioact; 2016 Oct; 162-163():68-79. PubMed ID: 27227560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Determination of Radon/Thoron Exhalation Rate in an Underground Coal Mine-Preliminary Results.
    Bonczyk M; Chałupnik S; Wysocka M; Grygier A; Hildebrandt R; Tosheva Z
    Int J Environ Res Public Health; 2022 May; 19(10):. PubMed ID: 35627576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Dose Conversions, Equilibrium Factors, and Unattached Fractions on Radon Risk Assessment in Operating and Show Underground Mines.
    Skubacz K; Wołoszczuk K; Grygier A; Samolej K
    Int J Environ Res Public Health; 2023 Apr; 20(8):. PubMed ID: 37107764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radon as a tracer of daily, seasonal and spatial air movements in the Underground Tourist Route "Coal Mine" (SW Poland).
    Tchorz-Trzeciakiewicz DE; Parkitny T
    J Environ Radioact; 2015 Nov; 149():90-8. PubMed ID: 26225833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dose estimation and radon action level problems due to nanosize radon progeny aerosols in underground manganese ore mine.
    Kávási N; Vigh T; Kovács T; Vaupotič J; Jobbágy V; Ishikawa T; Yonehara H
    J Environ Radioact; 2011 Sep; 102(9):806-12. PubMed ID: 21703736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Examination of underground miner data for radon progeny size reduction as cause of high radon "inverse" dose rate effect.
    Leonard BE
    Health Phys; 2007 Aug; 93(2):133-50. PubMed ID: 17622818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radon dose assessment in underground mines in Brazil.
    Santos TO; Rocha Z; Cruz P; Gouvea VA; Siqueira JB; Oliveira AH
    Radiat Prot Dosimetry; 2014 Jul; 160(1-3):120-3. PubMed ID: 24723186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High radon exposure in a Brazilian underground coal mine.
    Veiga LH; Melo V; Koifman S; Amaral EC
    J Radiol Prot; 2004 Sep; 24(3):295-305. PubMed ID: 15511021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved mathematical model for prediction of air quantity to minimise radiation levels in underground uranium mines.
    Panigrahi DC; Sahu P; Mishra DP
    J Environ Radioact; 2015 Feb; 140():95-104. PubMed ID: 25461521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentrations of radon and decay products in various underground mines in western Turkey and total effective dose equivalents.
    Yener G; Küçüktaş E
    Analyst; 1998 Jan; 123(1):31-4. PubMed ID: 9581017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contamination of settling ponds and rivers as a result of discharge of radium-bearing waters from Polish coal mines.
    Chalupnik S; Michalik B; Wysocka M; Skubacz K; Mielnikow A
    J Environ Radioact; 2001; 54(1):85-98. PubMed ID: 11379077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extremely high radon activity concentration in two adits of the abandoned uranium mine 'Podgórze' in Kowary (Sudety Mts., Poland).
    Fijałkowska-Lichwa L
    J Environ Radioact; 2016 Dec; 165():13-23. PubMed ID: 27573759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radon in Brazilian underground mines.
    Ayres da Silva ALM; de Eston SM; Iramina WS; Diegues Francisca D
    J Radiol Prot; 2018 Jun; 38(2):607-620. PubMed ID: 29443009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radon exposure assessment and dosimetry applied to epidemiology and risk estimation.
    Puskin JS; James AC
    Radiat Res; 2006 Jul; 166(1 Pt 2):193-208. PubMed ID: 16808608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radon and its daughter products behaviour in the air of an underground tourist route in the former arsenic and gold mine in Złoty Stok (Sudety Mountains, SW Poland).
    Przylibski TA
    J Environ Radioact; 2001; 57(2):87-103. PubMed ID: 11545384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of radon release rate for an underground uranium mine ventilation shaft in China and radon distribution characteristics.
    Zhou Q; Liu S; Xu L; Zhang H; Xiao D; Deng J; Pan Z
    J Environ Radioact; 2019 Mar; 198():18-26. PubMed ID: 30576899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lung cancer in radon-exposed miners and estimation of risk from indoor exposure.
    Lubin JH; Boice JD; Edling C; Hornung RW; Howe GR; Kunz E; Kusiak RA; Morrison HI; Radford EP; Samet JM
    J Natl Cancer Inst; 1995 Jun; 87(11):817-27. PubMed ID: 7791231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radon concentrations in three underground lignite mines in Turkey.
    Cile S; Altinsoy N; Celebi N
    Radiat Prot Dosimetry; 2010 Jan; 138(1):78-82. PubMed ID: 19770210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiological study of exposure levels in El Maghara underground coal mine.
    Amer HA; Shawky S; Hussein MI; Abd el-Hady ML
    J Environ Monit; 2002 Aug; 4(4):583-7. PubMed ID: 12196005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.