These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31422475)

  • 1. Defect-driven rotating system based on a double-walled carbon nanotube and graphene.
    Lin X; Han Q
    J Mol Model; 2019 Aug; 25(9):262. PubMed ID: 31422475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable nanoscale rotating actuator system based on carbon nanotube and graphene.
    Huang J; Han Q
    Nanotechnology; 2016 Apr; 27(15):155501. PubMed ID: 26934619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gradientless temperature-driven rotating motor from a double-walled carbon nanotube.
    Cai K; Li Y; Qin QH; Yin H
    Nanotechnology; 2014 Dec; 25(50):505701. PubMed ID: 25420489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The frequency of cantilevered double-wall carbon nanotube resonators as a function of outer wall length.
    Kang JW; Choi YG; Kim Y; Jiang Q; Kwon OK; Hwang HJ
    J Phys Condens Matter; 2009 Sep; 21(38):385301. PubMed ID: 21832365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One Dimensional Twisted Van der Waals Structures Constructed by Self-Assembling Graphene Nanoribbons on Carbon Nanotubes.
    Zhou K; Wang L; Wang R; Wang C; Tang C
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonant frequencies of cantilevered (8,8)(3,3) double-walled carbon nanotube Resonator with short outer wall.
    Kwon OK; Jeon HT; Hwang HJ; Kang JW
    J Nanosci Nanotechnol; 2011 Jan; 11(1):445-8. PubMed ID: 21446473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diamond Needles Actuating Triple-Walled Carbon Nanotube to Rotate via Thermal Vibration-Induced Collision.
    Li H; Wang A; Shi J; Liu Y; Cheng G
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30845705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy dissipation of high-speed nanobearings from double-walled carbon nanotubes.
    Zhu C; Guo W; Yu T
    Nanotechnology; 2008 Nov; 19(46):465703. PubMed ID: 21836258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical behaviors of carbon nanoscrolls.
    Wang T; Zhang C; Chen S
    J Nanosci Nanotechnol; 2013 Feb; 13(2):1136-40. PubMed ID: 23646588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum-coupled radial-breathing oscillations in double-walled carbon nanotubes.
    Liu K; Hong X; Wu M; Xiao F; Wang W; Bai X; Ager JW; Aloni S; Zettl A; Wang E; Wang F
    Nat Commun; 2013; 4():1375. PubMed ID: 23340415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of strain engineering on superlubricity in a double-walled carbon nanotube.
    Li J; Peng Y; Tang X; Xu Q; Bai L
    Phys Chem Chem Phys; 2021 Mar; 23(8):4988-5000. PubMed ID: 33621296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformation of graphene folding around single-walled carbon nanotubes.
    Dyer T; Thamwattana N; Cox B
    J Mol Model; 2018 Mar; 24(4):99. PubMed ID: 29564616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Closed-edged graphene nanoribbons from large-diameter collapsed nanotubes.
    Zhang C; Bets K; Lee SS; Sun Z; Mirri F; Colvin VL; Yakobson BI; Tour JM; Hauge RH
    ACS Nano; 2012 Jul; 6(7):6023-32. PubMed ID: 22676224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The identification of inner tube defects in double-wall carbon nanotubes.
    Allen CS; Robertson AW; Kirkland AI; Warner JH
    Small; 2012 Dec; 8(24):3810-5. PubMed ID: 22961712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Inner-to-Outer Wall Energy Transfer in Highly Pure Double-Wall Carbon Nanotubes Revealed by Detailed Spectroscopy.
    Erkens M; Levshov D; Wenseleers W; Li H; Flavel BS; Fagan JA; Popov VN; Avramenko M; Forel S; Flahaut E; Cambré S
    ACS Nano; 2022 Oct; 16(10):16038-16053. PubMed ID: 36167339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal gradient induced actuation in double-walled carbon nanotubes.
    Hou QW; Cao BY; Guo ZY
    Nanotechnology; 2009 Dec; 20(49):495503. PubMed ID: 19893145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous encapsulation behavior of ionic liquid into carbon nanotube.
    Jiang Y; Zhang K; Li H; He Y; Song X
    Nanoscale; 2012 Nov; 4(22):7063-9. PubMed ID: 23051856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative control of a rotary carbon nanotube motor under temperature stimulus.
    Cai K; Wan J; Qin QH; Shi J
    Nanotechnology; 2016 Feb; 27(5):055706. PubMed ID: 26757397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube and graphene fiber artificial muscles.
    Foroughi J; Spinks G
    Nanoscale Adv; 2019 Dec; 1(12):4592-4614. PubMed ID: 36133125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How does water-nanotube interaction influence water flow through the nanochannel?
    Li X; Shi Y; Yang Y; Du H; Zhou R; Zhao Y
    J Chem Phys; 2012 May; 136(17):175101. PubMed ID: 22583266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.