These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 3142268)

  • 1. Chemotactic peptide-induced arachidonic acid mobilization in human polymorphonuclear leukocytes.
    Galbraith GM
    Am J Pathol; 1988 Nov; 133(2):347-54. PubMed ID: 3142268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Ca2+ in phosphatidylinositol response and arachidonic acid release in formylated tripeptide- or Ca2+ ionophore A23187-stimulated guinea pig neutrophils.
    Takenawa T; Homma Y; Nagai Y
    J Immunol; 1983 Jun; 130(6):2849-55. PubMed ID: 6406597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the cytosolic free Ca2+ transient for fMet-Leu-Phe induced actin polymerization in human neutrophils.
    Bengtsson T; Stendahl O; Andersson T
    Eur J Cell Biol; 1986 Dec; 42(2):338-43. PubMed ID: 3816821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemotactic factor receptor activation transiently impairs the Ca2+ signaling capacity of beta 2 integrins on human neutrophils.
    Eierman D; Hellberg C; Sjölander A; Andersson T
    Exp Cell Res; 1994 Nov; 215(1):90-6. PubMed ID: 7525325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of protein kinase C inhibitors on calcium ionophore-induced arachidonic acid mobilization in human leukocytes.
    Galbraith GM
    Immunopharmacology; 1988; 16(2):63-9. PubMed ID: 3144517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phospholipid metabolism, calcium flux, and the receptor-mediated induction of chemotaxis in rabbit neutrophils.
    Bareis DL; Hirata F; Schiffmann E; Axelrod J
    J Cell Biol; 1982 Jun; 93(3):690-7. PubMed ID: 6288731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition by islet-activating protein of a chemotactic peptide-induced early breakdown of inositol phospholipids and Ca2+ mobilization in guinea pig neutrophils.
    Ohta H; Okajima F; Ui M
    J Biol Chem; 1985 Dec; 260(29):15771-80. PubMed ID: 2999136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in the incorporation of free fatty acids upon the stimulation of human polymorphonuclear leukocytes.
    Phillips WA; Mossmann H; Ferber E
    J Leukoc Biol; 1986 Mar; 39(3):267-84. PubMed ID: 3080542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of luminol chemiluminescence of fMet-Leu-Phe-stimulated neutrophils by affecting dephosphorylation and the metabolism of phosphatidic acid.
    Arnhold J; Benard S; Kilian U; Reichl S; Schiller J; Arnold K
    Luminescence; 1999; 14(3):129-37. PubMed ID: 10423573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arachidonic acid release in rabbit neutrophils.
    Tao W; Molski TF; Sha'afi RI
    Biochem J; 1989 Feb; 257(3):633-7. PubMed ID: 2494986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of NADPH-oxidase activity in human polymorphonuclear neutrophils by lipophilic ascorbic acid derivatives.
    Schmid E; Figala V; Ullrich V
    Mol Pharmacol; 1994 May; 45(5):815-25. PubMed ID: 8190099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Platelet activation induced by FMLP-stimulated neutrophils.
    Selak MA; Chignard M; Smith JB
    Agents Actions Suppl; 1986; 20():99-107. PubMed ID: 3101445
    [No Abstract]   [Full Text] [Related]  

  • 13. FMLP-induced arachidonic acid release, phospholipid metabolism, and calcium mobilization in human monocytes. Regulation by cyclic AMP.
    Godfrey RW; Manzi RM; Jensen BD; Hoffstein ST
    Inflammation; 1988 Jun; 12(3):223-30. PubMed ID: 2458317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of arachidonic acid and the chemotactic factor F-Met-Leu-Phe on cation transport in rabbit neutrophils.
    Sha'afi RI; Naccache PH; Alobaidi T; Molski TF; Volpi M
    J Cell Physiol; 1981 Feb; 106(2):215-23. PubMed ID: 7217212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of chemotactic factor-induced neutrophil responsiveness by arachidonic acid.
    Naccache PH; Molski TF; Volpi M; Mackin WM; Becker EL; Sha'afi RI
    J Cell Physiol; 1983 Jun; 115(3):243-8. PubMed ID: 6406520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell surface expression of fMet-Leu-Phe receptors on human neutrophils. Correlation to changes in the cytosolic free Ca2+ level and action of phorbol myristate acetate.
    Andersson T; Dahlgren C; Lew PD; Stendahl O
    J Clin Invest; 1987 Apr; 79(4):1226-33. PubMed ID: 3558823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of anti-allergy drugs on fMet-Leu-Phe-stimulated superoxide generation in human neutrophils.
    Hojo M; Hamasaki Y; Fujita I; Koga H; Matsumoto S; Miyazaki S
    Ann Allergy; 1994 Jul; 73(1):21-6. PubMed ID: 7913297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of phorbol ester-induced protein kinase activity in human neutrophils by platelet-activating factor.
    Gay JC; Stitt ES
    J Cell Physiol; 1988 Dec; 137(3):439-47. PubMed ID: 3192624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3-O-acetyl-11-keto-boswellic acid decreases basal intracellular Ca2+ levels and inhibits agonist-induced Ca2+ mobilization and mitogen-activated protein kinase activation in human monocytic cells.
    Poeckel D; Tausch L; George S; Jauch J; Werz O
    J Pharmacol Exp Ther; 2006 Jan; 316(1):224-32. PubMed ID: 16174802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cystathionine ketimine on the stimulus coupled responses of neutrophils and their modulation by various protein kinase inhibitors.
    Zhang J; Sugahara K; Sagara Y; Fontana M; Duprè S; Kodama H
    Biochem Biophys Res Commun; 1996 Jan; 218(1):371-6. PubMed ID: 8573164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.