These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 3142274)

  • 21. Relaxation of canine coronary artery to electrical stimulation: limited role of free radicals.
    Feletou M; Vanhoutte PM
    Am J Physiol; 1987 Oct; 253(4 Pt 2):H884-9. PubMed ID: 3116861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alterations of arachidonic acid metabolism modulate adenosine relaxation in isolated coronary arteries.
    Rubanyi GM; Paul RJ
    Blood Vessels; 1985; 22(5):209-16. PubMed ID: 3933595
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of the vasodilatory effects of bradykinin in isolated dog renal arteries and in buffer-perfused dog kidneys.
    Malomvölgyi B; Hadházy P; Tekes K; Koltai MZ; Pogátsa G
    Acta Physiol Hung; 1996; 84(1):9-18. PubMed ID: 8993670
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potassium-induced release of endothelium-derived relaxing factor from canine femoral arteries.
    Rubanyi GM; Vanhoutte PM
    Circ Res; 1988 Jun; 62(6):1098-103. PubMed ID: 3260148
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anoxic contractions in isolated canine cerebral arteries: contribution of endothelium-derived factors, metabolites of arachidonic acid, and calcium entry.
    Katusic ZS; Vanhoutte PM
    J Cardiovasc Pharmacol; 1986; 8 Suppl 8():S97-101. PubMed ID: 2433536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of responses to acetylcholine and serotonin on isolated canine and human coronary arteries.
    Berkenboom G; Unger P; Fang ZY; Degre S; Fontaine J
    Cardiovasc Res; 1989 Sep; 23(9):780-7. PubMed ID: 2482133
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Arachidonic acid-induced endothelial-dependent relaxations of canine coronary arteries: contribution of a cytochrome P-450-dependent pathway.
    Pinto A; Abraham NG; Mullane KM
    J Pharmacol Exp Ther; 1987 Mar; 240(3):856-63. PubMed ID: 3104582
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of endothelium-dependent contraction of the canine coronary artery by UW solution.
    Lin PJ; Chang CH; Yao PC; Hsieh HC; Hsieh MJ; Kao CL; Tsai KT
    Transplantation; 1994 Dec; 58(12):1323-8. PubMed ID: 7809923
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Endothelium-derived hyperpolarizing factor mediated relaxations in pig coronary arteries do not involve Gi/o proteins.
    Ng KF; Leung SW; Man RY; Vanhoutte PM
    Acta Pharmacol Sin; 2008 Dec; 29(12):1419-24. PubMed ID: 19026160
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Endothelial effects of hemostatic devices for continuous cardioplegia or minimally invasive operations.
    Perrault LP; Menasché P; Wassef M; Bidouard JP; Janiak P; Villeneuve N; Jacquemin C; Bloch G; Vilaine JP; Vanhoutte PM
    Ann Thorac Surg; 1996 Oct; 62(4):1158-63. PubMed ID: 8823106
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aggregating human platelets cause direct contraction and endothelium-dependent relaxation of isolated canine coronary arteries. Role of serotonin, thromboxane A2, and adenine nucleotides.
    Houston DS; Shepherd JT; Vanhoutte PM
    J Clin Invest; 1986 Aug; 78(2):539-44. PubMed ID: 3734103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Endothelium-dependent hyperpolarization caused by bradykinin in human coronary arteries.
    Nakashima M; Mombouli JV; Taylor AA; Vanhoutte PM
    J Clin Invest; 1993 Dec; 92(6):2867-71. PubMed ID: 8254041
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Propranolol induces contractions of canine small and large coronary arteries.
    Turlapaty PD; Altura BM
    Basic Res Cardiol; 1982; 77(1):68-81. PubMed ID: 6122440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Global myocardial ischemia and reperfusion impair endothelium-dependent relaxations to aggregating platelets in the canine coronary artery. A possible cause of vasospasm after cardiopulmonary bypass.
    Pearson PJ; Lin PJ; Schaff HV
    J Thorac Cardiovasc Surg; 1992 Jun; 103(6):1147-54. PubMed ID: 1597979
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Endothelin-1 releases endothelium-derived endoperoxides and thromboxane A2 in porcine coronary arteries with regenerated endothelium.
    Park SJ; Lee JJ; Vanhoutte PM
    Zhongguo Yao Li Xue Bao; 1999 Oct; 20(10):872-8. PubMed ID: 11270983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increased production of nitric oxide in coronary arteries during congestive heart failure.
    O'Murchu B; Miller VM; Perrella MA; Burnett JC
    J Clin Invest; 1994 Jan; 93(1):165-71. PubMed ID: 8282783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulation of beta adrenergic responsiveness by arachidonic acid metabolites in isolated bovine coronary arteries.
    Rubanyi GM; Paul RJ
    J Pharmacol Exp Ther; 1985 Sep; 234(3):555-60. PubMed ID: 2993584
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proximal and distal dog coronary arteries respond differently to basal EDRF but not to NO.
    Hoeffner U; Boulanger C; Vanhoutte PM
    Am J Physiol; 1989 Mar; 256(3 Pt 2):H828-31. PubMed ID: 2784288
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Potassium-induced endothelium-dependent rhythmic activity in the canine basilar artery.
    Katusic ZS; Shepherd JT; Vanhoutte PM
    J Cardiovasc Pharmacol; 1988 Jul; 12(1):37-41. PubMed ID: 2459532
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lysophosphatidylcholine modifies G protein-dependent signaling in porcine endothelial cells.
    Flavahan NA
    Am J Physiol; 1993 Mar; 264(3 Pt 2):H722-7. PubMed ID: 8456975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.