These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31422947)

  • 1. Nonlinear vibrations of axially moving simply supported viscoelastic nanobeams based on nonlocal strain gradient theory.
    Wang J; Shen H
    J Phys Condens Matter; 2019 Dec; 31(48):485403. PubMed ID: 31422947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Vibrations and Stability of Moving Viscoelastic Axially Functionally Graded Nanobeams.
    Shariati A; Jung DW; Mohammad-Sedighi H; Żur KK; Habibi M; Safa M
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32268480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear vibrations of pre- and post-buckled lipid supramolecular micro/nano-tubules via nonlocal strain gradient elasticity theory.
    Sahmani S; Aghdam MM
    J Biomech; 2017 Dec; 65():49-60. PubMed ID: 29050823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear Free and Forced Vibrations of a Hyperelastic Micro/Nanobeam Considering Strain Stiffening Effect.
    Alibakhshi A; Dastjerdi S; Malikan M; Eremeyev VA
    Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of the Higher-Order Hamilton Approach to the Nonlinear Free Vibrations Analysis of Porous FG Nano-Beams in a Hygrothermal Environment Based on a Local/Nonlocal Stress Gradient Model of Elasticity.
    Penna R; Feo L; Lovisi G; Fabbrocino F
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation into the Dynamic Stability of Nanobeams by Using the Levinson Beam Model.
    Huang Y; Huang R; Huang Y
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Surface Stress-Driven Model for Higher Vibration Modes of Functionally Graded Nanobeams.
    Lovisi G; Feo L; Lambiase A; Penna R
    Nanomaterials (Basel); 2024 Feb; 14(4):. PubMed ID: 38392723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluttering and divergence instability of functionally graded viscoelastic nanotubes conveying fluid based on nonlocal strain gradient theory.
    Nematollahi MS; Mohammadi H; Taghvaei S
    Chaos; 2019 Mar; 29(3):033108. PubMed ID: 30927831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-dependent thermo-mechanical vibration of lipid supramolecular nano-tubules via nonlocal strain gradient Timoshenko beam theory.
    Alizadeh-Hamidi B; Hassannejad R; Omidi Y
    Comput Biol Med; 2021 Jul; 134():104475. PubMed ID: 34022484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small-scale effects on the radial vibration of an elastic nanosphere based on nonlocal strain gradient theory.
    Ducottet S; El Baroudi A
    Nanotechnology; 2023 Jan; 34(11):. PubMed ID: 36595326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Stability of Nanobeams Based on the Reddy's Beam Theory.
    Huang Y; Huang R; Zhang J
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlocal strain gradient beam model for postbuckling and associated vibrational response of lipid supramolecular protein micro/nano-tubules.
    Sahmani S; Aghdam MM
    Math Biosci; 2018 Jan; 295():24-35. PubMed ID: 29104135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free vibration of a piezoelectric nanobeam resting on nonlinear Winkler-Pasternak foundation by quadrature methods.
    Ragb O; Mohamed M; Matbuly MS
    Heliyon; 2019 Jun; 5(6):e01856. PubMed ID: 31211259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic stability of the euler nanobeam subjected to inertial moving nanoparticles based on the nonlocal strain gradient theory.
    Hashemian M; Jasim DJ; Sajadi SM; Khanahmadi R; Pirmoradian M; Salahshour S
    Heliyon; 2024 May; 10(9):e30231. PubMed ID: 38737259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plastic failure of nonlocal beams.
    Challamel N; Lanos C; Casandjian C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026604. PubMed ID: 18850959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Nonlinear Nonlocal Thermoelasticity Euler-Bernoulli Beam Theory and Its Application to Single-Walled Carbon Nanotubes.
    Huang K; Xu W
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibration Characteristics of Magnetostrictive Composite Cantilever Resonator with Nonlocal Effect.
    Xu Y; Shang X; Xu K
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free Vibrations of Bernoulli-Euler Nanobeams with Point Mass Interacting with Heavy Fluid Using Nonlocal Elasticity.
    Barretta R; Čanađija M; Marotti de Sciarra F; Skoblar A
    Nanomaterials (Basel); 2022 Aug; 12(15):. PubMed ID: 35957106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled responses of thermomechanical waves in functionally graded viscoelastic nanobeams via thermoelastic heat conduction model including Atangana-Baleanu fractional derivative.
    Abouelregal AE; Marin M; Foul A; Askar SS
    Sci Rep; 2024 Apr; 14(1):9122. PubMed ID: 38643238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imperfection Sensitivity of Nonlinear Vibration of Curved Single-Walled Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory.
    Eshraghi I; Jalali SK; Pugno NM
    Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.