These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31423003)

  • 1. Significance of Data Selection in Deep Learning for Reliable Binding Mode Prediction of Ligands in the Active Site of CYP3A4.
    Sato A; Tanimura N; Honma T; Konagaya A
    Chem Pharm Bull (Tokyo); 2019 Nov; 67(11):1183-1190. PubMed ID: 31423003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-Based Site of Metabolism (SOM) Prediction of Ligand for CYP3A4 Enzyme: Comparison of Glide XP and Induced Fit Docking (IFD).
    Lokwani DK; Sarkate AP; Karnik KS; Nikalje APG; Seijas JA
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32244772
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Investigation of Ligand Binding to the Peripheral Site in CYP3A4: Conformational Dynamics and Inhibitor Discovery.
    Du H; Li J; Cai Y; Zhang H; Liu G; Tang Y; Li W
    J Chem Inf Model; 2017 Mar; 57(3):616-626. PubMed ID: 28221037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting cryptic ligand binding sites based on normal modes guided conformational sampling.
    Zheng W
    Proteins; 2021 Apr; 89(4):416-426. PubMed ID: 33244830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Off-target predictions in CRISPR-Cas9 gene editing using deep learning.
    Lin J; Wong KC
    Bioinformatics; 2018 Sep; 34(17):i656-i663. PubMed ID: 30423072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI.
    Song Y; Zhang YD; Yan X; Liu H; Zhou M; Hu B; Yang G
    J Magn Reson Imaging; 2018 Dec; 48(6):1570-1577. PubMed ID: 29659067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface plasmon resonance analysis of antifungal azoles binding to CYP3A4 with kinetic resolution of multiple binding orientations.
    Pearson JT; Hill JJ; Swank J; Isoherranen N; Kunze KL; Atkins WM
    Biochemistry; 2006 May; 45(20):6341-53. PubMed ID: 16700545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of data quality and quantity on deep learning for protein-ligand binding affinity prediction.
    Fan FJ; Shi Y
    Bioorg Med Chem; 2022 Oct; 72():117003. PubMed ID: 36103795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning Models Compared to Experimental Variability for the Prediction of CYP3A4 Time-Dependent Inhibition.
    Fluetsch A; Trunzer M; Gerebtzoff G; Rodríguez-Pérez R
    Chem Res Toxicol; 2024 Apr; 37(4):549-560. PubMed ID: 38501689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Prediction of the Site(s) of Metabolism and Binding Modes of Protein Kinase Inhibitors Metabolized by CYP3A4.
    Nair PC; McKinnon RA; Miners JO
    Drug Metab Dispos; 2019 Jun; 47(6):616-631. PubMed ID: 30902802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs.
    Ohno Y; Hisaka A; Suzuki H
    Clin Pharmacokinet; 2007; 46(8):681-96. PubMed ID: 17655375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution of CYP3A4 active site through assembly of ligand interactions as a grid-template: Solving the modes of the metabolism and inhibition.
    Yamazoe Y; Goto T; Tohkin M
    Drug Metab Pharmacokinet; 2019 Apr; 34(2):113-125. PubMed ID: 30639283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep neural networks show an equivalent and often superior performance to dermatologists in onychomycosis diagnosis: Automatic construction of onychomycosis datasets by region-based convolutional deep neural network.
    Han SS; Park GH; Lim W; Kim MS; Na JI; Park I; Chang SE
    PLoS One; 2018; 13(1):e0191493. PubMed ID: 29352285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of binding modes of ligands to multiple conformations of CYP3A4.
    Teixeira VH; Ribeiro V; Martel PJ
    Biochim Biophys Acta; 2010 Oct; 1804(10):2036-45. PubMed ID: 20601222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hidden bias in the DUD-E dataset leads to misleading performance of deep learning in structure-based virtual screening.
    Chen L; Cruz A; Ramsey S; Dickson CJ; Duca JS; Hornak V; Koes DR; Kurtzman T
    PLoS One; 2019; 14(8):e0220113. PubMed ID: 31430292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DeepDISE: DNA Binding Site Prediction Using a Deep Learning Method.
    Hendrix SG; Chang KY; Ryu Z; Xie ZR
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualizing convolutional neural network protein-ligand scoring.
    Hochuli J; Helbling A; Skaist T; Ragoza M; Koes DR
    J Mol Graph Model; 2018 Sep; 84():96-108. PubMed ID: 29940506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible structure of cytochrome P450: promiscuity of ligand binding in the CYP3A4 heme pocket.
    Ohkura K; Kawaguchi Y; Watanabe Y; Masubuchi Y; Shinohara Y; Hori H
    Anticancer Res; 2009 Mar; 29(3):935-42. PubMed ID: 19414330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.