These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 31423023)

  • 1. An MRI Compatible RF MEMs Controlled Wireless Power Transfer System.
    Byron K; Winkler SA; Robb F; Vasanawala S; Pauly J; Scott G
    IEEE Trans Microw Theory Tech; 2019 May; 67(5):1717-1726. PubMed ID: 31423023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An RF-gated wireless power transfer system for wireless MRI receive arrays.
    Byron K; Robb F; Stang P; Vasanawala S; Pauly J; Scott G
    Concepts Magn Reson Part B Magn Reson Eng; 2017 Oct; 47B(4):. PubMed ID: 31057343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical simulations of an integrated radio-frequency/wireless coil design for simultaneous acquisition and wireless transfer of magnetic resonance imaging data.
    Overson DK; Bresticker J; Willey D; Robb F; Song AW; Truong TK; Darnell D
    Phys Med Biol; 2023 Jun; 68(12):. PubMed ID: 37192635
    [No Abstract]   [Full Text] [Related]  

  • 4. Design of standalone wireless impedance matching (SWIM) system for RF coils in MRI.
    Kandala SK; Sohn SM
    Sci Rep; 2022 Dec; 12(1):21604. PubMed ID: 36517622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wireless Charging System Using Resonant Inductor in Class E Power Amplifier for Electronics and Sensors.
    Wen F; Cheng X; Li Q; Ye J
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32423111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Study on the Optimal Magnetic Beam Forming of Coil Arrays for Long Distance Wireless Power Transmission.
    Oh MJ; Danuor P; Jung YB
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Level pinning of anti-
    Guo Z; Yang F; Zhang H; Wu X; Wu Q; Zhu K; Jiang J; Jiang H; Yang Y; Li Y; Chen H
    Natl Sci Rev; 2024 Jan; 11(1):nwad172. PubMed ID: 38116095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modern Advances in Magnetic Materials of Wireless Power Transfer Systems: A Review and New Perspectives.
    Wang D; Zhang J; Cui S; Bie Z; Song K; Zhu C; Matveevich MI
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the Stability of Medium Range and Misalignment Wireless Power Transfer System by Negative Magnetic Metamaterials.
    Wang S; Jiang C; Tao X; Chen F; Rong C; Lu C; Zeng Y; Liu X; Liu R; Wei B; Liu M
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33327379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wireless Power Transfer Techniques for Implantable Medical Devices: A Review.
    Khan SR; Pavuluri SK; Cummins G; Desmulliez MPY
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wireless Power Harvesting During MRI.
    Venkateswaran M; Kurpad K; Brown JE; Fain S; van der Weide D
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1469-1472. PubMed ID: 33018268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-coil approach to reduce electromagnetic energy absorption for wirelessly powered implants.
    RamRakhyani AK; Lazzi G
    Healthc Technol Lett; 2014 Jan; 1(1):21-5. PubMed ID: 26609371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated radio-frequency/wireless coil design for simultaneous MR image acquisition and wireless communication.
    Darnell D; Cuthbertson J; Robb F; Song AW; Truong TK
    Magn Reson Med; 2019 Mar; 81(3):2176-2183. PubMed ID: 30277273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Review of Metamaterials in Wireless Power Transfer.
    Rong C; Yan L; Li L; Li Y; Liu M
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wireless power transfer analysis of circular and spherical coils under misalignment conditions for biomedical implants.
    Palagani Y; Mohanarangam K; Shim JH; Choi JR
    Biosens Bioelectron; 2019 Sep; 141():111283. PubMed ID: 31295707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultracompact Implantable Design With Integrated Wireless Power Transfer and RF Transmission Capabilities.
    Sun G; Muneer B; Li Y; Zhu Q
    IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):281-291. PubMed ID: 29570056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible Magnetic Metasurface with Defect Cavity for Wireless Power Transfer System.
    Hiep LTH; Khuyen BX; Tung BS; Ngo QM; Lam VD; Pham TS
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A low-frequency versatile wireless power transfer technology for biomedical implants.
    Jiang H; Zhang J; Lan D; Chao ; Liou S; Shahnasser H; Fechter R; Hirose S; Harrison M; Roy S
    IEEE Trans Biomed Circuits Syst; 2013 Aug; 7(4):526-35. PubMed ID: 23893211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Multi-Hop Wireless Power Transfer for the Indoor Environment.
    Eidaks J; Kusnins R; Babajans R; Cirjulina D; Semenjako J; Litvinenko A
    Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37687824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced Monitoring Systems Based on Battery-Less Asset Tracking Modules Energized through RF Wireless Power Transfer.
    La Rosa R; Dehollain C; Livreri P
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32466540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.