These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31423454)

  • 41. Global mitigation efforts cannot neglect emerging emitters.
    Cui C; Guan D; Wang D; Meng J; Chemutai V; Brenton P; Zhang S; Shan Y; Zhang Q; Davis SJ
    Natl Sci Rev; 2022 Dec; 9(12):nwac223. PubMed ID: 36540615
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transport impacts on atmosphere and climate: Aviation.
    Lee DS; Pitari G; Grewe V; Gierens K; Penner JE; Petzold A; Prather MJ; Schumann U; Bais A; Berntsen T; Iachetti D; Lim LL; Sausen R
    Atmos Environ (1994); 2010 Dec; 44(37):4678-4734. PubMed ID: 32288556
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Impacts of transportation sector emissions on future U.S. air quality in a changing climate. Part II: Air quality projections and the interplay between emissions and climate change.
    Campbell P; Zhang Y; Yan F; Lu Z; Streets D
    Environ Pollut; 2018 Jul; 238():918-930. PubMed ID: 29684896
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modelling of sectoral emissions of short-lived and long-lived climate pollutants under various control technological strategies.
    Arif M; Kumar R; Kumar R; Zusman E
    Sci Total Environ; 2020 Jan; 699():134358. PubMed ID: 31522047
    [TBL] [Abstract][Full Text] [Related]  

  • 45. When could global warming reach 4°C?
    Betts RA; Collins M; Hemming DL; Jones CD; Lowe JA; Sanderson MG
    Philos Trans A Math Phys Eng Sci; 2011 Jan; 369(1934):67-84. PubMed ID: 21115513
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An estimated cost of lost climate regulation services caused by thawing of the Arctic cryosphere.
    Euskirchen ES; Goodstein ES; Huntington HP
    Ecol Appl; 2013 Dec; 23(8):1869-80. PubMed ID: 24555313
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Formation of the North Atlantic Warming Hole by reducing anthropogenic sulphate aerosols.
    Kusakabe Y; Takemura T
    Sci Rep; 2023 Jan; 13(1):8. PubMed ID: 36593248
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The contribution of China's emissions to global climate forcing.
    Li B; Gasser T; Ciais P; Piao S; Tao S; Balkanski Y; Hauglustaine D; Boisier JP; Chen Z; Huang M; Li LZ; Li Y; Liu H; Liu J; Peng S; Shen Z; Sun Z; Wang R; Wang T; Yin G; Yin Y; Zeng H; Zeng Z; Zhou F
    Nature; 2016 Mar; 531(7594):357-61. PubMed ID: 26983540
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improved calculation of warming-equivalent emissions for short-lived climate pollutants.
    Cain M; Lynch J; Allen MR; Fuglestvedt JS; Frame DJ; Macey AH
    NPJ Clim Atmos Sci; 2019 Sep; 2(1):29. PubMed ID: 31656858
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Leaf anatomy, BVOC emission and CO2 exchange of arctic plants following snow addition and summer warming.
    Schollert M; Kivimäenpää M; Michelsen A; Blok D; Rinnan R
    Ann Bot; 2017 Feb; 119(3):433-445. PubMed ID: 28064192
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exploring effective short-lived climate pollutant mitigation scenarios by considering synergies and trade-offs of combinations of air pollutant measures and low carbon measures towards the level of the 2 °C target in Asia.
    Hanaoka T; Masui T
    Environ Pollut; 2020 Jun; 261():113650. PubMed ID: 32078884
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of thermal optical analysis method of elemental carbon for marine fuel exhaust.
    Lappi MK; Ristimäki JM
    J Air Waste Manag Assoc; 2017 Dec; 67(12):1298-1318. PubMed ID: 28548907
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Global temperature responses to current emissions from the transport sectors.
    Berntsen T; Fuglestvedt J
    Proc Natl Acad Sci U S A; 2008 Dec; 105(49):19154-9. PubMed ID: 19047640
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Climate forcing from the transport sectors.
    Fuglestvedt J; Berntsen T; Myhre G; Rypdal K; Skeie RB
    Proc Natl Acad Sci U S A; 2008 Jan; 105(2):454-8. PubMed ID: 18180450
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sources of black carbon in the atmosphere and in snow in the Arctic.
    Qi L; Wang S
    Sci Total Environ; 2019 Nov; 691():442-454. PubMed ID: 31323589
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact on short-lived climate forcers (SLCFs) from a realistic land-use change scenario via changes in biogenic emissions.
    Scott CE; Monks SA; Spracklen DV; Arnold SR; Forster PM; Rap A; Carslaw KS; Chipperfield MP; Reddington CLS; Wilson C
    Faraday Discuss; 2017 Aug; 200():101-120. PubMed ID: 28585973
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Environmental impact of national and subnational carbon policies in China based on a multi-regional dynamic CGE model.
    Zhang WW; Zhao B; Gu Y; Sharp B; Xu SC; Liou KN
    J Environ Manage; 2020 Sep; 270():110901. PubMed ID: 32721336
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tracing the climate signal: mitigation of anthropogenic methane emissions can outweigh a large Arctic natural emission increase.
    Christensen TR; Arora VK; Gauss M; Höglund-Isaksson L; Parmentier FW
    Sci Rep; 2019 Feb; 9(1):1146. PubMed ID: 30718695
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming.
    Oechel WC; Vourlitis GL; Hastings SJ; Zulueta RC; Hinzman L; Kane D
    Nature; 2000 Aug; 406(6799):978-81. PubMed ID: 10984048
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reducing Planetary Health Risks Through Short-Lived Climate Forcer Mitigation.
    Zheng Y; Unger N
    Geohealth; 2021 Jul; 5(7):e2021GH000422. PubMed ID: 34308088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.