These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 31423698)

  • 21. ECM concentration and cell-mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue.
    Zhang G; Varkey M; Wang Z; Xie B; Hou R; Atala A
    Biotechnol Bioeng; 2020 Apr; 117(4):1148-1158. PubMed ID: 31840798
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments.
    Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS
    Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine.
    Cidonio G; Glinka M; Dawson JI; Oreffo ROC
    Biomaterials; 2019 Jul; 209():10-24. PubMed ID: 31022557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photocurable Biopolymers for Coaxial Bioprinting.
    Costantini M; Barbetta A; Swieszkowski W; Seliktar D; Gargioli C; Rainer A
    Methods Mol Biol; 2021; 2147():45-54. PubMed ID: 32840809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous Micropatterning of Fibrous Meshes and Bioinks for the Fabrication of Living Tissue Constructs.
    de Ruijter M; Ribeiro A; Dokter I; Castilho M; Malda J
    Adv Healthc Mater; 2019 Apr; 8(7):e1800418. PubMed ID: 29911317
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visible Light Photoinitiation of Cell-Adhesive Gelatin Methacryloyl Hydrogels for Stereolithography 3D Bioprinting.
    Wang Z; Kumar H; Tian Z; Jin X; Holzman JF; Menard F; Kim K
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):26859-26869. PubMed ID: 30024722
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell encapsulation in gelatin bioink impairs 3D bioprinting resolution.
    Schwartz R; Malpica M; Thompson GL; Miri AK
    J Mech Behav Biomed Mater; 2020 Mar; 103():103524. PubMed ID: 31785543
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlling Light in Scattering Materials for Volumetric Additive Manufacturing.
    Madrid-Wolff J; Boniface A; Loterie D; Delrot P; Moser C
    Adv Sci (Weinh); 2022 Aug; 9(22):e2105144. PubMed ID: 35585671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D bioprinting and in vitro study of bilayered membranous construct with human cells-laden alginate/gelatin composite hydrogels.
    Liu P; Shen H; Zhi Y; Si J; Shi J; Guo L; Shen SG
    Colloids Surf B Biointerfaces; 2019 Sep; 181():1026-1034. PubMed ID: 31382330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs.
    Ji S; Guvendiren M
    Front Bioeng Biotechnol; 2017; 5():23. PubMed ID: 28424770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Suspension bath bioprinting and maturation of anisotropic meniscal constructs.
    Prendergast ME; Heo SJ; Mauck RL; Burdick JA
    Biofabrication; 2023 Apr; 15(3):. PubMed ID: 36913724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Next Evolution in Organ-Scale Biofabrication: Bioresin Design for Rapid High-Resolution Vat Polymerization.
    Murphy CA; Lim KS; Woodfield TBF
    Adv Mater; 2022 May; 34(20):e2107759. PubMed ID: 35128736
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review.
    Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL
    J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fast Stereolithography Printing of Large-Scale Biocompatible Hydrogel Models.
    Anandakrishnan N; Ye H; Guo Z; Chen Z; Mentkowski KI; Lang JK; Rajabian N; Andreadis ST; Ma Z; Spernyak JA; Lovell JF; Wang D; Xia J; Zhou C; Zhao R
    Adv Healthc Mater; 2021 May; 10(10):e2002103. PubMed ID: 33586366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D Bioprinting of Complex, Cell-laden Alginate Constructs.
    Tabriz AG; Cornelissen DJ; Shu W
    Methods Mol Biol; 2021; 2147():143-148. PubMed ID: 32840817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D Bioprinting: from Benches to Translational Applications.
    Heinrich MA; Liu W; Jimenez A; Yang J; Akpek A; Liu X; Pi Q; Mu X; Hu N; Schiffelers RM; Prakash J; Xie J; Zhang YS
    Small; 2019 Jun; 15(23):e1805510. PubMed ID: 31033203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs.
    Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K
    Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.
    Daly AC; Critchley SE; Rencsok EM; Kelly DJ
    Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybrid microscaffold-based 3D bioprinting of multi-cellular constructs with high compressive strength: A new biofabrication strategy.
    Tan YJ; Tan X; Yeong WY; Tor SB
    Sci Rep; 2016 Dec; 6():39140. PubMed ID: 27966623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.