These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31423740)

  • 1. An automatic diagnostic system of coronary artery lesions in Kawasaki disease using intravascular optical coherence tomography imaging.
    Abdolmanafi A; Cheriet F; Duong L; Ibrahim R; Dahdah N
    J Biophotonics; 2020 Jan; 13(1):e201900112. PubMed ID: 31423740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning-based model for characterization of atherosclerotic plaque in coronary arteries using optical coherence tomography  images.
    Abdolmanafi A; Duong L; Ibrahim R; Dahdah N
    Med Phys; 2021 Jul; 48(7):3511-3524. PubMed ID: 33914917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of coronary arterial lesions due to Kawasaki disease using optical coherence tomography.
    Kakimoto N; Suzuki H; Kubo T; Suenaga T; Takeuchi T; Shibuta S; Ino Y; Akasaka T; Yoshikawa N
    Can J Cardiol; 2014 Aug; 30(8):956.e7-9. PubMed ID: 24999171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical Characterization of Coronary Atherosclerosis With Dual-Modality OCT and Near-Infrared Autofluorescence Imaging.
    Ughi GJ; Wang H; Gerbaud E; Gardecki JA; Fard AM; Hamidi E; Vacas-Jacques P; Rosenberg M; Jaffer FA; Tearney GJ
    JACC Cardiovasc Imaging; 2016 Nov; 9(11):1304-1314. PubMed ID: 26971006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of coronary artery pathological formations from OCT imaging using deep learning.
    Abdolmanafi A; Duong L; Dahdah N; Adib IR; Cheriet F
    Biomed Opt Express; 2018 Oct; 9(10):4936-4960. PubMed ID: 30319913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Evaluation progress of coronary arterial lesions in children with Kawasaki disease using optical coherence tomography].
    Zhang QY; Zheng B; Gao YM; Du JB
    Zhonghua Er Ke Za Zhi; 2022 Sep; 60(9):957-960. PubMed ID: 36038312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography.
    Abdolmanafi A; Duong L; Dahdah N; Cheriet F
    Biomed Opt Express; 2017 Feb; 8(2):1203-1220. PubMed ID: 28271012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diagnostic Accuracy of 320-Row Computed Tomography for Characterizing Coronary Atherosclerotic Plaques: Comparison with Intravascular Optical Coherence Tomography.
    Ybarra LF; Szarf G; Ishikawa W; Chamié D; Caixeta A; Puri R; Perin MA
    Cardiovasc Revasc Med; 2020 May; 21(5):640-646. PubMed ID: 31501019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Survey on Coronary Atherosclerotic Plaque Tissue Characterization in Intravascular Optical Coherence Tomography.
    Boi A; Jamthikar AD; Saba L; Gupta D; Sharma A; Loi B; Laird JR; Khanna NN; Suri JS
    Curr Atheroscler Rep; 2018 May; 20(7):33. PubMed ID: 29781047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound.
    Jang IK; Bouma BE; Kang DH; Park SJ; Park SW; Seung KB; Choi KB; Shishkov M; Schlendorf K; Pomerantsev E; Houser SL; Aretz HT; Tearney GJ
    J Am Coll Cardiol; 2002 Feb; 39(4):604-9. PubMed ID: 11849858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Usefulness of Single Photon Emission Computed Tomography/Computed Tomography Fusion-Hybrid Imaging to Evaluate Coronary Artery Disorders in Patients with a History of Kawasaki Disease.
    Abe M; Fukazawa R; Ogawa S; Watanabe M; Fukushima Y; Kiriyama T; Hayashi H; Itoh Y
    J Nippon Med Sch; 2016; 83(2):71-80. PubMed ID: 27180792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Intracoronary Plaque Imaging with Intravascular Ultrasound, Optical Coherence Tomography, and Near-Infrared Spectroscopy in Patients with Coronary Artery Disease.
    Hoang V; Grounds J; Pham D; Virani S; Hamzeh I; Qureshi AM; Lakkis N; Alam M
    Curr Atheroscler Rep; 2016 Sep; 18(9):57. PubMed ID: 27485540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasound images for tissue characterization of human coronary plaques.
    Kawasaki M; Bouma BE; Bressner J; Houser SL; Nadkarni SK; MacNeill BD; Jang IK; Fujiwara H; Tearney GJ
    J Am Coll Cardiol; 2006 Jul; 48(1):81-8. PubMed ID: 16814652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intra-Slice Motion Correction of Intravascular OCT Images Using Deep Features.
    Abdolmanafi A; Duong L; Dahdah N; Cheriet F
    IEEE J Biomed Health Inform; 2019 May; 23(3):931-941. PubMed ID: 30387755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical coherence tomography for characterization of cardiac allograft vasculopathy in late survivors of pediatric heart transplantation.
    Tomai F; De Luca L; Petrolini A; Di Vito L; Ghini AS; Corvo P; De Persio G; Parisi F; Pongiglione G; Giulia Gagliardi M; Prati F
    J Heart Lung Transplant; 2016 Jan; 35(1):74-79. PubMed ID: 26452998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated Detection of Vulnerable Plaque for Intravascular Optical Coherence Tomography Images.
    Liu R; Zhang Y; Zheng Y; Liu Y; Zhao Y; Yi L
    Cardiovasc Eng Technol; 2019 Dec; 10(4):590-603. PubMed ID: 31535296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo coronary lesion differentiation with computed tomography angiography and intravascular ultrasound as compared to optical coherence tomography.
    Wieringa WG; Lexis CP; Lipsic E; van der Werf HW; Burgerhof JG; Hagens VE; Bartels GL; Broersen A; Schurer RA; Tan ES; van der Harst P; van den Heuvel AF; Willems TP; Pundziute G
    J Cardiovasc Comput Tomogr; 2017; 11(2):111-118. PubMed ID: 28169175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging assessment and accuracy in coronary artery autopsy: comparison of frequency-domain optical coherence tomography with intravascular ultrasound and histology.
    Shimokado A; Kubo T; Matsuo Y; Ino Y; Shiono Y; Shimamura K; Katayama Y; Taruya A; Nishiguchi T; Kashiwagi M; Kitabata H; Tanaka A; Hozumi T; Akasaka T
    Int J Cardiovasc Imaging; 2019 Oct; 35(10):1785-1790. PubMed ID: 31175528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted Near-Infrared Fluorescence Imaging of Atherosclerosis: Clinical and Intracoronary Evaluation of Indocyanine Green.
    Verjans JW; Osborn EA; Ughi GJ; Calfon Press MA; Hamidi E; Antoniadis AP; Papafaklis MI; Conrad MF; Libby P; Stone PH; Cambria RP; Tearney GJ; Jaffer FA
    JACC Cardiovasc Imaging; 2016 Sep; 9(9):1087-1095. PubMed ID: 27544892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging the delayed complications of childhood Kawasaki disease.
    Crean A; Benson L; Shah A; Han K; Lesser J; McCrindle BW
    F1000Res; 2022; 11():147. PubMed ID: 36970577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.